MATEC Web of Conference809, 03026 (2020) https://doi.org/10.1051/matecconf/202030903026
CSCNS2019

Research on task offloading based on deep
reinforcement learning in mobile edge
environment

Xia Gad”", andFanggin Xut
1College ofinformationTechnology Shanghai Jian Qiadniversity, ShanghaR01306 China

Keywords: Mobile edge computing, Task offloading, Deep
reinforcement learning, iFogSim.

Abstract . With the rapid development of Internet technology and mobile
terminals, userslemand for higtspeed networks iacreasing. Mobile edge
computing proposes a distributed caching approach to deal with the impact
of massive data traffic on communication networks, in order to reduce
network latency and improve user service qualitythis paper, a deep
reinforcement larning algorithm is proposed to solve the task unloading
problem of multiservice nodes. The simulation platform iFogSim and data
set Google Cluster Trace are used to carry out experiments. The final results
show that the tastiffloading strategy based on DDQN algorithm has a good
effect on energy consumption and c¢asthas verified the application
prospect of deep reinforcement learning algorithm in mobile edge
computing.

1 Introduction

With the rapid development of smart devices, cloud computing hasumedle to meet
the growing demand for data processi@g.the one hand, because all the required business
data need to be transmitted through the core network, it will cause a great load on the core
network during the peak period of the network. On the other hand, according to the relative
distance between smart devices and cloud data centers, there will be a large network delay,
which seriously affects the quality of service of dedapsitive applicationsgn response to
the above problemMEC(mobile edje computinyj provides services by using an open
platform that integrates network, computing, storage, and application core capabilities on the
side close to the physical entity or data soukdEC executes its applications on the edge
side, resulting indster network service response, meeting the industry's basic needs for real
time processing, smart applications, security and privacy protedtienefore, this paper
will design a taskoffloading strategy based on deep reinforcement learning, which can
effectively reduce the energy consumption of each service node and the cost of user

paymenfl].

* Corresponding authot:4080@gench.edu.cn

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative
Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

MATEC Web of Conference809, 03026 (2020) https://doi.org/10.1051/matecconf/202030903026
CSCNS2019

2 Problem modeling

2.1 MEC structure

The composition of the MEC usually consists of three parts: the cloud data center layer, the
edge server layer, and tte¥minal devicdayer.As shown inFigurel , the terminal device

layer includes various types of sensors, computers, and mobile phones having certain
processing performanc&he edge server layer divides all edge servers according to relative
distance, atheach area contains an edge server with moderate performance and heterogeneity;
The cloud data center layer contains a large number ofg@gbrmance physical servers

that form a cluster to serve ug@is When the task from the mobile terminal needbdo
offloaded the whole mobile application is first divided into gakks that have data
interaction with each other but can be executed independently by some sorting algorithm.
Some of these suiasks must be executed locally. Others are tasks thadiecaffloaded

which are usually data processing tasks with a large amount of computatibis paper,

all computing devices in the entire MEC are represented by (D, B, G), where D represents a
cloud data center with massive computing resources, whiahaisly composed of one
physical machine cluste = {b;|i € [1,m]} denotes a set having m edge servé&rs;

{g;li € [1,n]} denotes a set having n mobile terminal dey&jes

Fig. 1. MEC structure graph

2.2 Performance metrics

In this paper, the energy consumption model and the cost model are designed to evaluate the
results of taskoffloading strategy based on deep reinforcement learning. The algorithm
model is as follows:

Power model For the total energy consumption generated by all computing devices
including smartphones and remote servers in a certain period of time, this paper first defines
the power model formula of theh computing device as follows:

K+«P"* +(1—-K)*P™¥xu ifu>0
0 otherwise

P = { ®

where K represents the percentage of energy consumed by the computing device in the idle
state, P/"** represents the energy consumed by #thecomputing device at full load, and

u is the CPU utilizationln addition, the computing device load is constantly changing with
time. Now assume thai(t) is a function of calculating the CPU utilization of the device

MATEC Web of Conference809, 03026 (2020) https://doi.org/10.1051/matecconf/202030903026
CSCNS2019

per unit time, then the computing device with a total beinof (1+m-+n) starting from time
to- The total energy consumption per unit time tis:

Energyam(to) = S [P (u(®) dt 2)

Cost model Users need to pay for computing resources provided by remote servers. In
this paper, alynamic price model based on resource surplus is used. When the resource
surplus is less, the resource price will be higher. At this time, users tend to choose service
nodes with lower unit price as tloéfloading target, so as to reduce user costs whilleea
same timemprowvng resource utilizatiof]. The formula is based on a dynamic price model
that calculates the remaining amount of resources:

Cost = CC + UT * RPM % LU x TM 3)

CC indicates the cost that the current device has generated, UTanditaunit interval
time for the fee calculation, RPM indicates the price set by the unit computing resource, LU
indicates the computing resource ratio that the current device has used, and TM indicates the
total computing resource of the current devidé.the same time, since the computing
resources of the local device belong to the user and do not need to be calculated as the service
provided by the operator, the total cost formula of all charging devices (1+m) is:

Costgym = Y™ Cost; (4)
3 Algorithm design

3.1 DDQN algorithm

The DDQN algorithm is a value iterative algorithm that combines deep learning and
reinforcement learning. It uses the experience pool and the target network to solve the non
static distribution prolem and the model instability probl¢sh. At the same time, in order

to minimize the influence of overestimation, the DDQN algorithm splits the work of selecting
the optimal action and estimating the optimal agépnTherefore, the calculation formula

of the loss function is:

{ L(e) = E[(TargetQ - Q(St! at! e))Z]

, _ 5
TargetQ = reyq +YQ(Se41, argmaxy Q(ses 1, @', 0); 67) ©)

where Q(s;, a,, 0) represents the output of the current network MainNet, used to calculate
the Q value of the current state action p&@i(s,,, argmax,Q(s.1,a’,0); 67) represents

the output of the target network TargetNet, which is used to calculate the tarmgee@fter
tsaking the optimal value action.

3.2 MDP model

State spaceln order to comprehensively consider the characteristics between MEC neutron
tasks and server resources, this paper defines the state space at time stgp=t as
M, U;, Uy, ..., U;, ..., Uyin), where M Indicates the CPU resources required for this subtask
deployment;U; represents the CPU utilization of thethicomputing device at time step t.

At the same time, in order to ensure that thetask can only be selected to be executed on
the local mobile terminal device or the remote server, only (2+m) calculations need to be

MATEC Web of Conference809, 03026 (2020) https://doi.org/10.1051/matecconf/202030903026
CSCNS2019

considered for the stiasK7]. The deice containonecloud data centegnelocal device
and m edge servers.

Action spaceln order to offload the subtask to the appropriate computing device, the
action space is specified to correspond to the set of available computing detheedeep
reinforcement learningand(0/1)/ is used to indicate whether ththisubtask is offloaded to
the jth computing devi¢8]. Therefore, for a cluster containing (2+m) computing devices,
the action space id = (ay,ay, ..., Aypm)-

Reward function This paper will consider the energy consumption and cost of all
equipment in the MEC to evaluate the advantages and disadvantagesofficheing
decision. The calculation formula of the reward function is:

{R = aY MM energy; + B Y12 cost; ©)
a+pf=1

where energy; and cost; represent the energy consumption and cost of-thedevice,
respectively; o and B represent the weights they occupy, and their sum is 1. In addition, since

the mobile terminal device belongs to the user privately, the module deployed on the local
devicedoes not calculate the fetherefore Y,}21" cost; means that only the total cost of
remote services provided by the cloud data center and edge servers is ci®ulated

4 Simulation experiment

4.1 Simulation environment

This paper uses iFogSim to siratd the MEGbased task unloading problem, and compares
the energy consumption and cost of each algorithm in-lsecgle heterogeneous clusters to
reflect the advantages and disadvantages obttheading decisiori10]. The algorithms
implemented include policy Mobile based on local device prioritization, a poliEgge
based on edge server prioritizatiapolicyDQN based on deep reinforcement learning, and
a policy DDQN based on improved deep reinforcement learnifige equipment cluster
simulated by the simulation experiment mainly includes a cloud data center, 60 edge servers
and a number of mobile terminal devices, in which all edge servers are equally divided into
10 different regionsand each mobile terminal diee can only send one application offload
request at the same tinle. this paper, the corresponding simulation device configuration
and average performant@power ratio are set with reference to SPEC (Standard
Performance Evaluation Corporation). Theger the value, the less energy the device
consumes under the same performance. The detailed information is shown in Table 1.

In order to simulate theffloading process after the mobile application is split into
different subtasks, this paper constricssibtask dependency of online shopping. As shown
in Figure 4, the application is mainly by edge, front end, login, accounts, orders, shipping.
Subtasks such as catalogue, cart, and payment, where edge must be executed on the mobile
device, and the remairg subtasks can be selected based on the decision whetlfifyad.
Online shopping applications usually have very high requirements for offloading decisions.
On the one hand, they need to offload higimputing data processing modules to remote
servergo minimize the energy consumption of mobile devices. On the other hand, computing
modules need to be as close as possible to data stoneshice the delay caused by data
transfer between moduldsa this paper, the parameters of all deep reinforceteanting
algorithm models are uniformly set to ensure the fairness of training results. The memory
space size of deep reinforcement learning is defined as M=100000, the learning rate of
optimization algorithm SGD is 0=0.005, and the batch learning size is K=32. The update
period of the target network parameter is C=50, and the discount coefficient y=0.9.

MATEC Web of Conference809, 03026 (2020) https://doi.org/10.1051/matecconf/202030903026
CSCNS2019

Table 1. Computing device detailed configuration table

Model Type CPUFrequency| Cores performanceo-power | Unit
(MHZ) ratio
RX4770 M4 Datacenter 2100 112 12828 0.05
RX350 S7 Edge server 2200 16 5035 0.01
DL325 Edge server 2000 32 8083 0.01
Genl0
DL360 Edge server 2500 28 11550 0.01
Genl0
TX120 Local device 2666 2 454 0
TX150 S5 Local device 2666 2 356 0
TX150 S6 Local device 2400 4 667 0

Fig. 2. Network shopping subtask dependency graph

4.2 Analysis of experimental results

In order to reflect the changes in resource utilization of mobile applications in different time
periods, this paper uses Google Cluster Trace dataset to simulate theafteagiemodule
utilization over timeln addition, in order to ensure that the strategies generated by each deep
reinforcement learning algorithm are highly efficient, this paper first selects some data from
the Google dataset to train each neural netwibid) select other data to test the trained
network model to compare the versatility and efficiency of each strat@gye 3 shows the

loss function scores of the small batch samples of the DQN algorithm and the DDQN
algorithm during training. The smaller the loss function, the better the network model results.
It can be seen from the figure that the DDQN algorithmfaster convergence speed and
higher stability than the DQN algorithm under the same paramEtguse 4and Figure %s
resource loss grapltgenerated by each algorithm in tasfloading As the number of
applications increases, tldfloading strategis generated by each algorithm increase in
energy consumption and cost. Among them, dffftoading strategy based on Mobile
algorithm achieves good results in cost, while the performance in energy consumption is
general.The offloading strategy based on Eéalgorithm performs generally in terms of
energy consumption and cost; because DQN algorithm converges slowly and is unstable, the
offloading strategy generated by DQN algorithm performs worst in terms of energy

MATEC Web of Conference809, 03026 (2020) https://doi.org/10.1051/matecconf/202030903026
CSCNS2019

consumption and cost when the training psc only iterates 300 times; tbéfloading
strategy based on DQN algorithm performs better than DQN algorithm in terms of energy
consumption and cost. In terms of energy consumption, it consumes the least of all the
algorithms, and is second only to Mabih terms of cost.

Fig. 3. Algorithmic loss function graph

Fig. 4. Energy consumption graph of each algorithm

Fig. 5. Costgraph of each algorithm

MATEC Web of Conference809, 03026 (2020) https://doi.org/10.1051/matecconf/202030903026

CSCNS2019

5 Summary

In this paper, deep reinforcement learning is proposed to solve the task unloading problem in
mobile edge computing. Experiments on iFogSim simulation platform verify the advantages
and disadvantages of each algorithm in terms of energy consumption arccosding to

the experimental results, the unloading strategy based on DDQN algorithm has the best
comprehensive performance compared with Mobile algorithm, Edge algorithm and DQN
algorithm, which proves the application prospects of deep reinforceesentrlg algorithm

in mobile edge computing.

Reference

1.

Roman R, Lopez J, Mambo M. Mobile edge computing, fog et al.: A survey and analysis
of security threats and challenges[J]. Future Generation Computer Systems, 2018, 78:
680-698.

Li H, Ota K, Dong M. Leening IoT in edge: Deep learning for the Internet of Things
with edge computing[J]. IEEE Network, 2018, 32(1):19H..

Chen M, Hao Y. Task offloading for mobile edge computing in software defined ultra
dense network[J]. IEEE Journal on Selected Areas imr@anications, 2018, 36(3):
587-597.

Tran T X, Pompili D. Joint task offloading and resource allocation for +eettier
mobile-edge computing networks[J]. IEEE Transactions on Vehicular Technology, 2018,
68(1): 856868.

Haifeng Lu, Chunhua Gu, Fei Luo, Whao Ding, Xinping Liu,Optimization of
lightweight task offloading strategy for mobile edge computing based on deep
reinforcement learning,Future Generation Computer Systems,2019

Lyu X, Tian H, Ni W, et al. Energgfficient admission of delagensitive taks for
mobile edge computing[J]. IEEE Transactions on Communications, 2018, 66(6): 2603
2616.

Bi S, Zhang Y J. Computation rate maximization for wireless powered redgie
computing with binary computation offloading[J]. IEEE Transactions on Wireless
Communications, 2018, 17(6): 4:4190.

Yang C, Liu Y, Chen X, et al. Efficient mobilitgware task offloading for vehicular
edge computing networks[J]. IEEE Access, 2019, 7: 2&kb4.

Gupta H, Vahid Dastjerdi A, Ghosh S K, et al. iFogSim: A toolkitrfaxdeling and
simulation of resource management techniques in the Internet of Things, Edge and Fog
computing environments[J]. Software: Practice and Experience, 2017, 47(912265

	1 Introduction
	2 Problem modeling
	2.1 MEC structure
	2.2 Performance metrics

	3 Algorithm design
	3.1 DDQN algorithm
	3.2 MDP model

	4 Simulation experiment
	4.1 Simulation environment
	4.2 Analysis of experimental results

	5 Summary

