
Research on task offloading based on deep
reinforcement learning in mobile edge
environment

Xia Gao1,*, and Fangqin Xu1
1College of Information Technology, Shanghai Jian Qiao University, Shanghai, 201306, China

Keywords: Mobile edge computing, Task offloading, Deep
reinforcement learning, iFogSim.

Abstract . With the rapid development of Internet technology and mobile
terminals, users' demand for high-speed networks is increasing. Mobile edge
computing proposes a distributed caching approach to deal with the impact
of massive data traffic on communication networks, in order to reduce
network latency and improve user service quality. In this paper, a deep
reinforcement learning algorithm is proposed to solve the task unloading
problem of multi-service nodes. The simulation platform iFogSim and data
set Google Cluster Trace are used to carry out experiments. The final results
show that the task offloading strategy based on DDQN algorithm has a good
effect on energy consumption and cost, it has verified the application
prospect of deep reinforcement learning algorithm in mobile edge
computing.

1 Introduction

With the rapid development of smart devices, cloud computing has been unable to meet
the growing demand for data processing. On the one hand, because all the required business
data need to be transmitted through the core network, it will cause a great load on the core
network during the peak period of the network. On the other hand, according to the relative
distance between smart devices and cloud data centers, there will be a large network delay,
which seriously affects the quality of service of delay-sensitive applications. In response to
the above problem, MEC(mobile edge computing) provides services by using an open
platform that integrates network, computing, storage, and application core capabilities on the
side close to the physical entity or data source. MEC executes its applications on the edge
side, resulting in faster network service response, meeting the industry's basic needs for real-
time processing, smart applications, security and privacy protection. Therefore, this paper
will design a task offloading strategy based on deep reinforcement learning, which can
effectively reduce the energy consumption of each service node and the cost of user
payment[1].

* Corresponding author: 14080@gench.edu.cn

CSCNS2019
MATEC Web of Conferences 309, 03026 (2020) https://doi.org/10.1051/matecconf/202030903026

 © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative
Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

2 Problem modeling

2.1 MEC structure

The composition of the MEC usually consists of three parts: the cloud data center layer, the
edge server layer, and the terminal device layer. As shown in Figure 1 , the terminal device
layer includes various types of sensors, computers, and mobile phones having certain
processing performance; The edge server layer divides all edge servers according to relative
distance, and each area contains an edge server with moderate performance and heterogeneity;
The cloud data center layer contains a large number of high-performance physical servers
that form a cluster to serve users[2]. When the task from the mobile terminal needs to be
offloaded, the whole mobile application is first divided into sub-tasks that have data
interaction with each other but can be executed independently by some sorting algorithm.
Some of these sub-tasks must be executed locally. Others are tasks that can be offloaded,
which are usually data processing tasks with a large amount of computation. In this paper,
all computing devices in the entire MEC are represented by (D, B, G), where D represents a
cloud data center with massive computing resources, which is mainly composed of one
physical machine cluster; B = {𝑏𝑏𝑖𝑖|i ∈ [1, m]} denotes a set having m edge servers; G=
{𝑔𝑔j|j ∈ [1, n]} denotes a set having n mobile terminal devices[3].

Fig. 1. MEC structure graph.

2.2 Performance metrics

In this paper, the energy consumption model and the cost model are designed to evaluate the
results of task offloading strategy based on deep reinforcement learning. The algorithm
model is as follows:

Power model: For the total energy consumption generated by all computing devices
including smartphones and remote servers in a certain period of time, this paper first defines
the power model formula of the i-th computing device as follows:

𝑃𝑃𝑖𝑖(𝑢𝑢) = �𝐾𝐾 ∗ 𝑃𝑃𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 + (1 − 𝐾𝐾) ∗ 𝑃𝑃𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝑢𝑢 𝑖𝑖𝑖𝑖 𝑢𝑢 > 0
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (1)

where 𝐾𝐾 represents the percentage of energy consumed by the computing device in the idle
state, 𝑃𝑃𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 represents the energy consumed by the i-th computing device at full load, and
𝑢𝑢 is the CPU utilization. In addition, the computing device load is constantly changing with
time. Now assume that u(t) is a function of calculating the CPU utilization of the device

CSCNS2019
MATEC Web of Conferences 309, 03026 (2020) https://doi.org/10.1051/matecconf/202030903026

2

per unit time, then the computing device with a total number of (1+m+n) starting from time
𝑡𝑡0. The total energy consumption per unit time t is:

𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡0) = ∑ ∫ 𝑃𝑃𝑖𝑖�u(t)�𝑡𝑡0+𝑡𝑡
𝑡𝑡0

𝑑𝑑𝑑𝑑1+𝑚𝑚+𝑛𝑛
𝑖𝑖=1 (2)

Cost model: Users need to pay for computing resources provided by remote servers. In
this paper, a dynamic price model based on resource surplus is used. When the resource
surplus is less, the resource price will be higher. At this time, users tend to choose service
nodes with lower unit price as the offloading target, so as to reduce user costs while at the
same time improving resource utilization[4]. The formula is based on a dynamic price model
that calculates the remaining amount of resources:

Cost = CC + UT ∗ RPM ∗ LU ∗ TM (3)

CC indicates the cost that the current device has generated, UT indicates the unit interval
time for the fee calculation, RPM indicates the price set by the unit computing resource, LU
indicates the computing resource ratio that the current device has used, and TM indicates the
total computing resource of the current device. At the same time, since the computing
resources of the local device belong to the user and do not need to be calculated as the service
provided by the operator, the total cost formula of all charging devices (1+m) is:

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖1+𝑚𝑚
𝑖𝑖=1 (4)

3 Algorithm design

3.1 DDQN algorithm

The DDQN algorithm is a value iterative algorithm that combines deep learning and
reinforcement learning. It uses the experience pool and the target network to solve the non-
static distribution problem and the model instability problem[5]. At the same time, in order
to minimize the influence of overestimation, the DDQN algorithm splits the work of selecting
the optimal action and estimating the optimal action[6]. Therefore, the calculation formula
of the loss function is:

� 𝐿𝐿(θ) = E[(TargetQ − Q(s𝑡𝑡 , a𝑡𝑡 ,θ))2]
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑟𝑟𝑡𝑡+1 + 𝛾𝛾𝛾𝛾(s𝑡𝑡+1,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎′Q(s𝑡𝑡+1,𝑎𝑎′,θ);θ−) (5)

where Q(s𝑡𝑡 , a𝑡𝑡 ,θ) represents the output of the current network MainNet, used to calculate
the Q value of the current state action pair; 𝑄𝑄(s𝑡𝑡+1,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎′Q(s𝑡𝑡+1,𝑎𝑎′,θ); θ−) represents
the output of the target network TargetNet, which is used to calculate the target Q value after
tsaking the optimal value action.

3.2 MDP model

State space: In order to comprehensively consider the characteristics between MEC neutron
tasks and server resources, this paper defines the state space at time step t as 𝑆𝑆𝑡𝑡 =
(M,𝑈𝑈1,𝑈𝑈2, … ,𝑈𝑈𝑖𝑖 , … ,𝑈𝑈2+𝑚𝑚), where M Indicates the CPU resources required for this subtask
deployment; 𝑈𝑈𝑖𝑖 represents the CPU utilization of the i-th computing device at time step t.
At the same time, in order to ensure that the sub-task can only be selected to be executed on
the local mobile terminal device or the remote server, only (2+m) calculations need to be

CSCNS2019
MATEC Web of Conferences 309, 03026 (2020) https://doi.org/10.1051/matecconf/202030903026

3

considered for the sub-task[7]. The device contains one cloud data center, one local device
and m edge servers.

Action space: In order to offload the subtask to the appropriate computing device, the
action space is specified to correspond to the set of available computing devices in the deep
reinforcement learning, and (0/1)ij is used to indicate whether the i-th sub-task is offloaded to
the jth computing device[8]. Therefore, for a cluster containing (2+m) computing devices,
the action space is 𝐴𝐴 = (𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎2+𝑚𝑚).

Reward function: This paper will consider the energy consumption and cost of all
equipment in the MEC to evaluate the advantages and disadvantages of the offloading
decision. The calculation formula of the reward function is:

�R = α∑ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖1+𝑚𝑚+𝑛𝑛
𝑖𝑖=1 + β∑ cost𝑖𝑖1+𝑚𝑚

𝑖𝑖=1
𝛼𝛼 + 𝛽𝛽 = 1 (6)

where 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 and cost𝑖𝑖 represent the energy consumption and cost of the i-th device,
respectively; α and β represent the weights they occupy, and their sum is 1. In addition, since
the mobile terminal device belongs to the user privately, the module deployed on the local
device does not calculate the fee, therefore ∑ cost𝑖𝑖1+𝑚𝑚

𝑖𝑖=1 means that only the total cost of
remote services provided by the cloud data center and edge servers is calculated[9].

4 Simulation experiment

4.1 Simulation environment

This paper uses iFogSim to simulate the MEC-based task unloading problem, and compares
the energy consumption and cost of each algorithm in large-scale heterogeneous clusters to
reflect the advantages and disadvantages of the offloading decision[10]. The algorithms
implemented include a policy Mobile based on local device prioritization, a policy Edge
based on edge server prioritization, a policy DQN based on deep reinforcement learning, and
a policy DDQN based on improved deep reinforcement learning. The equipment cluster
simulated by the simulation experiment mainly includes a cloud data center, 60 edge servers
and a number of mobile terminal devices, in which all edge servers are equally divided into
10 different regions, and each mobile terminal device can only send one application offload
request at the same time. In this paper, the corresponding simulation device configuration
and average performance-to-power ratio are set with reference to SPEC (Standard
Performance Evaluation Corporation). The larger the value, the less energy the device
consumes under the same performance. The detailed information is shown in Table 1.

In order to simulate the offloading process after the mobile application is split into
different subtasks, this paper constructs a sub-task dependency of online shopping. As shown
in Figure 4, the application is mainly by edge, front end, login, accounts, orders, shipping.
Subtasks such as catalogue, cart, and payment, where edge must be executed on the mobile
device, and the remaining subtasks can be selected based on the decision whether to offload.
Online shopping applications usually have very high requirements for offloading decisions.
On the one hand, they need to offload high-computing data processing modules to remote
servers to minimize the energy consumption of mobile devices. On the other hand, computing
modules need to be as close as possible to data sources to reduce the delay caused by data
transfer between modules. In this paper, the parameters of all deep reinforcement learning
algorithm models are uniformly set to ensure the fairness of training results. The memory
space size of deep reinforcement learning is defined as M=100000, the learning rate of
optimization algorithm SGD is α=0.005, and the batch learning size is K=32. The update
period of the target network parameter is C=50, and the discount coefficient γ=0.9.

CSCNS2019
MATEC Web of Conferences 309, 03026 (2020) https://doi.org/10.1051/matecconf/202030903026

4

Table 1. Computing device detailed configuration table.

Model Type CPU Frequency
(MHZ)

Cores performance-to-power
ratio

Unit

RX4770 M4 Datacenter 2100 112 12828 0.05
RX350 S7 Edge server 2200 16 5035 0.01

DL325
Gen10

Edge server 2000 32 8083 0.01

DL360
Gen10

Edge server 2500 28 11550 0.01

TX120 Local device 2666 2 454 0
TX150 S5 Local device 2666 2 356 0
TX150 S6 Local device 2400 4 667 0

Fig. 2. Network shopping subtask dependency graph.

4.2 Analysis of experimental results

In order to reflect the changes in resource utilization of mobile applications in different time
periods, this paper uses Google Cluster Trace dataset to simulate the change of each module
utilization over time. In addition, in order to ensure that the strategies generated by each deep
reinforcement learning algorithm are highly efficient, this paper first selects some data from
the Google dataset to train each neural network, then select other data to test the trained
network model to compare the versatility and efficiency of each strategy. Figure 3 shows the
loss function scores of the small batch samples of the DQN algorithm and the DDQN
algorithm during training. The smaller the loss function, the better the network model results.
It can be seen from the figure that the DDQN algorithm has faster convergence speed and
higher stability than the DQN algorithm under the same parameters. Figure 4 and Figure 5 is
resource loss graphs generated by each algorithm in task offloading. As the number of
applications increases, the offloading strategies generated by each algorithm increase in
energy consumption and cost. Among them, the offloading strategy based on Mobile
algorithm achieves good results in cost, while the performance in energy consumption is
general. The offloading strategy based on Edge algorithm performs generally in terms of
energy consumption and cost; because DQN algorithm converges slowly and is unstable, the
offloading strategy generated by DQN algorithm performs worst in terms of energy

CSCNS2019
MATEC Web of Conferences 309, 03026 (2020) https://doi.org/10.1051/matecconf/202030903026

5

consumption and cost when the training process only iterates 300 times; the offloading
strategy based on DQN algorithm performs better than DQN algorithm in terms of energy
consumption and cost. In terms of energy consumption, it consumes the least of all the
algorithms, and is second only to Mobile in terms of cost.

Fig. 3. Algorithmic loss function graph.

Fig. 4. Energy consumption graph of each algorithm.

Fig. 5. Cost graph of each algorithm.

CSCNS2019
MATEC Web of Conferences 309, 03026 (2020) https://doi.org/10.1051/matecconf/202030903026

6

5 Summary

In this paper, deep reinforcement learning is proposed to solve the task unloading problem in
mobile edge computing. Experiments on iFogSim simulation platform verify the advantages
and disadvantages of each algorithm in terms of energy consumption and cost. According to
the experimental results, the unloading strategy based on DDQN algorithm has the best
comprehensive performance compared with Mobile algorithm, Edge algorithm and DQN
algorithm, which proves the application prospects of deep reinforcement learning algorithm
in mobile edge computing.

Reference

1. Roman R, Lopez J, Mambo M. Mobile edge computing, fog et al.: A survey and analysis
of security threats and challenges[J]. Future Generation Computer Systems, 2018, 78:
680-698.

2. Li H, Ota K, Dong M. Learning IoT in edge: Deep learning for the Internet of Things
with edge computing[J]. IEEE Network, 2018, 32(1): 96-101.

3. Chen M, Hao Y. Task offloading for mobile edge computing in software defined ultra-
dense network[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(3):
587-597.

4. Tran T X, Pompili D. Joint task offloading and resource allocation for multi-server
mobile-edge computing networks[J]. IEEE Transactions on Vehicular Technology, 2018,
68(1): 856-868.

5. Haifeng Lu, Chunhua Gu, Fei Luo, Weichao Ding, Xinping Liu, Optimization of
lightweight task offloading strategy for mobile edge computing based on deep
reinforcement learning,Future Generation Computer Systems,2019

6. Lyu X, Tian H, Ni W, et al. Energy-efficient admission of delay-sensitive tasks for
mobile edge computing[J]. IEEE Transactions on Communications, 2018, 66(6): 2603-
2616.

7. Bi S, Zhang Y J. Computation rate maximization for wireless powered mobile-edge
computing with binary computation offloading[J]. IEEE Transactions on Wireless
Communications, 2018, 17(6): 4177-4190.

8. Yang C, Liu Y, Chen X, et al. Efficient mobility-aware task offloading for vehicular
edge computing networks[J]. IEEE Access, 2019, 7: 26652-26664.

9. Gupta H, Vahid Dastjerdi A, Ghosh S K, et al. iFogSim: A toolkit for modeling and
simulation of resource management techniques in the Internet of Things, Edge and Fog
computing environments[J]. Software: Practice and Experience, 2017, 47(9): 1275-1296.

CSCNS2019
MATEC Web of Conferences 309, 03026 (2020) https://doi.org/10.1051/matecconf/202030903026

7

	1 Introduction
	2 Problem modeling
	2.1 MEC structure
	2.2 Performance metrics

	3 Algorithm design
	3.1 DDQN algorithm
	3.2 MDP model

	4 Simulation experiment
	4.1 Simulation environment
	4.2 Analysis of experimental results

	5 Summary

