Open Access
Issue
MATEC Web Conf.
Volume 309, 2020
2019 International Conference on Computer Science Communication and Network Security (CSCNS2019)
Article Number 02011
Number of page(s) 8
Section Network Security and Software Design
DOI https://doi.org/10.1051/matecconf/202030902011
Published online 04 March 2020
  1. D. Conway, Modeling Network Evolution Using Graph Motifs, Computing Research Repository (CoRR), 2011. [1] Pape, Robert A. 2009. “Introduction: What is new about research on terrorism.” Security Studies no. 18 (4):643–650. [Google Scholar]
  2. Cronin, A. K. (2006). How al-Qaida ends: The decline and demise of terrorist groups. International Security, 31(1),7–48. [CrossRef] [Google Scholar]
  3. Crandall, David J, Lars Backstrom, Dan Cosley, Siddharth Suri, Daniel Huttenlocher, and Jon Kleinberg. 2010. “Inferring social ties from geographic coincidences.” Proceedings of the National Academy of Sciences no. 107 (52):22436–22441. [CrossRef] [Google Scholar]
  4. Lauw, Hady W, Ee-Peng Lim, HweeHwa Pang, and Teck-Tim Tan. 2010. “Stevent: Spa-tio-temporal event model for social network discovery.” ACM Transactions on Information Sys-tems (TOIS) no. 28 (3): 15. [Google Scholar]
  5. Mathew, Wesley, Ruben Raposo, and Bruno Martins. 2012. Predicting future locations with hidden Markov models. Paper read at Proceedings of the 2012 ACM conference on ubiquitous computing. [Google Scholar]
  6. Moon, Il-Chul, and Kathleen M Carley. 2007. “Modeling and simulating terrorist networks in social and geospatial dimensions.” Intelligent Systems, IEEE no. 22 (5):40–49. [CrossRef] [Google Scholar]
  7. Shapiro, Alexandra. 2010. “National Consortium for the Study of Terrorism and Responses to Terrorism.” [Google Scholar]
  8. Medina, Richard M, Laura K Siebeneck, and George F Hepner. 2011. “A geographic information systems (GIS) analysis of spatiotemporal patterns of terrorist incidents in Iraq 2004-2009.” Studies in Conflict & Terrorism no. 34 (11):862–882. [CrossRef] [Google Scholar]
  9. Walther, Olivier J, and Christian Leuprecht. 2015. “ Mapping and deterring violent extremist networks in North-West Africa”. Department of Border Region Studies W orking Paper no. 4:15. [Google Scholar]
  10. Uddin, S., Khan, A., Hossain, L., Piraveenan, M., & Carlsson, S. (2015). A topological framework to explore longitudinal social networks. Computational & Mathematical Organization Theory, 21(1),48–68. [CrossRef] [Google Scholar]
  11. Skyrms, B., & Pemantle, R. (2000). A dynamic model of social network formation. Proc Natl Acad Sci U S A, 97(16),9340–9346. [CrossRef] [Google Scholar]
  12. Palla, G., Pollner, P., Barabasi, A. L., & Vicsek, T. (2009). Social group dynamics in networks. In Adaptive Networks (pp. 11–38). Springer Berlin Heidelberg. [Google Scholar]
  13. Dorogovtsev, S. N., Mendes, J. F. F., & Samukhin, A. N. (2000). Structure of growing networks with preferential linking. Physical review letters, 85(21), 4633. [CrossRef] [PubMed] [Google Scholar]
  14. Barabasi, A. L. (2013). Network science: Chapter 5 THE BARABASI-ALBERT MODEL. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 371(1987), 20120375. [CrossRef] [Google Scholar]
  15. Jeong, H., Neda, Z., & Balabasi, A. L. Measuring pre-ferential attachment for evolving network, 2001. arXiv preprint cond-mat/0104131. [Google Scholar]
  16. Palla, G., Pollner, P., Barabasi, A. L., & Vicsek, T. (2009). Social group dynamics in networks. In Adaptive Networks (pp. 11–38). Springer Berlin Heidelberg. [CrossRef] [Google Scholar]
  17. Wasserman, Stanley, and Katherine Faust. 1994. Social network analysis: Methods and applications. Vol. 8: Cambridge university press. [Google Scholar]
  18. Duijn, P. A. C., Kashirin, V., & Sloot, P. M. A.. (2014). The relative ineffectiveness of criminal network disruption. Scientific Reports, 4. [Google Scholar]
  19. National Consortium for the Study of Terrorism and Responses to Terrorism (START). (2013). Global Terrorism Database globalterrorismdb_0814dist-1993.xlsx and gtd1993_0814dist.xlsx. Retrieved from http://www.start.umd.edu/gtd. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.