Open Access
MATEC Web Conf.
Volume 308, 2020
2019 8th International Conference on Transportation and Traffic Engineering (ICTTE 2019)
Article Number 04005
Number of page(s) 5
Section Transportation Infrastructure and Transportation Engineering
Published online 12 February 2020
  1. G.R. Johnson, W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures. In: Proc. 7th Int symp ballistics pp. 541–547 (The Hague, Netherlands, 19–21 April 1983). [Google Scholar]
  2. H. Shin, J.-B. Kim, A Phenomenological Constitutive Equation to Describe Various Flow Stress Behaviors of Materials in Wide Strain Rate and Temperature Regimes, J. Eng. Mater. Technol. 132, 021009 (2010). [CrossRef] [Google Scholar]
  3. Y.-H. Yoo, S.-H. Paik, J.-B. Kim, H. Shin, Performance of a Flying Cross Bar to Incapacitate a Long-Rod Penetrator Based on a Finite Element Model, Eng. Comput., 29(4), 409–415 (2013). [CrossRef] [Google Scholar]
  4. D.-H. Kim, H. Shin, D. Jung, A Numerical Study on Jet Formation and Penetration Characteristics of the Shaped Charge with an Aspect Ratio of 2.73 and a High-Strength Copper Liner (in Korean), Kor. J. Comput. Design Eng., 24(1), 73–84 (2019). [CrossRef] [Google Scholar]
  5. D. Kim, J.-H. Lee, H. Shin et al., A Numerical Study on the Influence of the Flow Stress of Copper Liner on the Penetration Performance of a Small-Caliber High Explosive (in Korean), Kor. J. Comput. Design Eng., 24(4), 300–310 (2019). [CrossRef] [Google Scholar]
  6. H. Shin H, H.-J. Lee, Y.-H. Yoo, W. Lee, A Determination Procedure for Element Elimination Criterion in Finite Element Analysis of High-Strain-Rate Impact/Penetration Phenomena, JSME Int. J. 47(1), 35–41 (2004). [CrossRef] [Google Scholar]
  7. H. Kolsky, An investigation of the Mechanical Properties of Materials at Very High Rates of Loading. Proc. Phys. Soc. Lond. Sect. B, 62(11), 676–700 (1949). [Google Scholar]
  8. M.A. Meyers, Dynamic behavior of materials (John Wiley & Sons, Inc, New York, 1994). [CrossRef] [Google Scholar]
  9. M.M. Al-Mousawi, S.R. Reid, W.F. Deans, The Use of the Split Hopkinson Pressure Bar Techniques in High Strain Rate Materials Testing, Proc. IMechE, Part C: J. Mech. Eng. Sci., 211, 273–292 (1997). [CrossRef] [Google Scholar]
  10. H. Shin, J.-B. Kim, Evolution of Specimen Strain Rate in Split Hopkinson Bar Test, Proc. IMechE, Part C: J. Mech. Eng. Sci., 233(13), 4667–4687 (2019). [CrossRef] [Google Scholar]
  11. H. Shin, J.-B. Kim, Understanding the Anomalously Long Duration Time of the Transmitted Pulse from a Soft Specimen in a Kolsky Bar Experiment, Int. J. Precision Eng. Manufact., 17(2), 203–208 (2016). [CrossRef] [Google Scholar]
  12. H. Couque, The Use of the Direct Impact Hopkinson Pressure Bar Technique to Describe Thermally Activated and Viscous Regimes of Metallic Materials, Phil. Trans. R. Soc. A, 372, 20130218 (2013). [CrossRef] [Google Scholar]
  13. L.J. Lea, A.P. Jardine, Application of Photon Doppler Velocimetry to Direct Impact Hopkinson Pressure Bars, Rev. Sci. Instruments 87, 023101 (2016). [Google Scholar]
  14. R. Othman, S. Aloui, A. Poitou, Identification of Non-Homogeneous Stress Fields in Dynamic Experiments with a Non-Parametric Method, Polym. Testing 29, 616–623 (2010). [Google Scholar]
  15. J.Z. Malinowski, J.R. Klepaczko, Z.L. Kowalewski, Miniaturized Compression Test at Very High Strain Rates by Direct Impact, Exp. Mech., 47, 451–463 (2007). [Google Scholar]
  16. F. Kamler, P. Niessen, R.J. Pick, Measurement of the Behaviour of High Purity Copper at Very High Rates of Straining, Canad. J. Phys., 73(5–6), pp. 295–303 (1995). [Google Scholar]
  17. Gorham D.A. A Numerical Method for the Correction of Dispersion in Pressure Bar Signals. J. Phys. E: Sci. Instum., 16, 477–479 (1983). [CrossRef] [Google Scholar]
  18. Z. Li, J. Lambros, Determination of the Dynamic Response of Brittle Composites by the Use of the Split Hopkinson Pressure Bar, Compos. Sci. Tech., 59, 1097–1107 (1999). [Google Scholar]
  19. Y.-H. Yoo, W. Lee, H. Shin, Spherical Nano-Indentation of a Hard Thin Film/Soft Substrate Layered System: II. Evolution of Stress and Strain Fields, Modelling Simul. Mater. Sci. Eng., 12, 69–78 (2004). [Google Scholar]
  20. R.A.C. Slater, Engineering Plasticity, Theory and Application to Metal Forming Processes (Macmillan, London, 1977). [Google Scholar]
  21. A. Tyas and A.J. Watson, An Investigation of Frequency Domain Dispersion Correction for Pressure Bar Signals, Int. J. lmpact Eng., 25, 87–101 (2001). [Google Scholar]
  22. B. De Saint-Venant, Mémoire sur la Torsion des Prismes (Memory on the Torsion of the Prisms), Mém. des Savants étrangers, 14, 233-560 (1855). [Google Scholar]
  23. Punmia B.C., Jain A.K. and Jain A.K. Mechanics of Materials. (Laxmi Publications (P), Ltd., New Delhi 2001). [Google Scholar]
  24. H. Shin, D. Kim, One Dimensional Analyses of Striker Impact on Bar with Different General Impedance, Proc. IMechE, Part C: J. Mech. Eng. Sci., (2019). [Google Scholar]
  25. H. Shin, J.-H. Lee, J.-B. Kim, S.-I. Sohn, Design Guidelines for the Striker and Transfer Flange of a Split Hopkinson Tension Bar and the Origin of Spurious Waves, Proc. IMechE, Part C: J. Mech. Eng. Sci., (2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.