Open Access
MATEC Web Conf.
Volume 306, 2020
The 6th International Conference on Mechatronics and Mechanical Engineering (ICMME 2019)
Article Number 03004
Number of page(s) 5
Section Control Theory and Control Engineering
Published online 14 January 2020
  1. Anan Suebsomran, Suthep Butdee, Cooling process on a run-out table by the simulation method, Cas Studies in Thermal Engineering 1 (2013) 51–56 [CrossRef] [Google Scholar]
  2. Ananya Mukhopadhyay, SudiptaSikdar, Implementation of an on-line run-out table model in a hot strip mill, Journal of Materials Processing Technology 169 (2005) 164–172 [Google Scholar]
  3. Siamak Serajzadeh, Prediction of temperature variations and kinetics of austenite phase change on the run- out table, Materials Science and Engineering A 421 (2006) 260–267 [CrossRef] [Google Scholar]
  4. Heung Nam Han, JaeKon Lee, Hong Joon Kim, Young-Sool Jin, A model for deformation, temperature and phase transformation behavior of steels on run-out table in hot strip mill, Journal of Materials Processing Technology 128 (2002) 216–225 [Google Scholar]
  5. Xiaodong Wang, Fei Li, Quan Yang, Anrui He, FEM analysis for residual stress prediction in hot rolled steel strip during the run-out table cooling, Applied Mathematical Modelling 37 (2013) 586–609 [CrossRef] [Google Scholar]
  6. WANG Xiao-dong, LI Fei, JIANG Zheng-yi, Thermal, Micro structural and Mechanical Coupling Analysis Model for Flatness Change Prediction During Run-Out Table Cooling in Hot Strip Rolling, JOURNAL OFIRON AND STEEL RESEARCH, INTERNATIONAL. 2012, 1 9 (9):43–51 [Google Scholar]
  7. Zhongqing Zhou, Peter F. Thomson, Yee Cheong Lam, Daniel D.W. Yuen, Numerical analysis of residual stress in hot-rolled steel strip on the run-out table, Journal of Materials Processing Technology 132 (2003) 184–197 [Google Scholar]
  8. G.N. Xie, Q.W. Wang, M. Zeng, L.Q. Luo, Heattransferanalysis for shell-and-tube heat exchangers with experimental data by artificial neural networks approach, Applied Thermal Engineering 27 (2007) 1096–1104 [CrossRef] [Google Scholar]
  9. Kemal Ermis, Aytunc Erek, Ibrahim Dincer, Heat transfer analysis of phase change process in a finned-tube thermal energy storage system using artificial neural network, International Journal of Heat and Mass Transfer 50 (2007) 3163–3175 [CrossRef] [Google Scholar]
  10. Yasar Islamoglu, A new approach for the prediction of the heat transfer rate of the wire-on-tube type heat exchanger––use of an artificial neural network model, Applied Thermal Engineering 23 (2003) 243–249 [CrossRef] [Google Scholar]
  11. Arturo Pacheco-Vega, Mihir Sen, K.T. Yang, dney L. McClain, Neural network analysis of fin-tube refrigerating heat exchanger with limited experimental data, International Journal of Heat and Mass Transfer 44 (2001) 763–770 [Google Scholar]
  12. K.JA MBUNATHAN, S. L. HARTLE, S. ASHFORTH-FROST and V. N. FONTAMA, Evaluating convective heat transfer coefficients using neural networks, 0017–9310(95)00332–0 [Google Scholar]
  13. C.K. Tan, J. Ward, S.J. Wilcox, R. Payne, Artificial neural network modelling of the thermal performance of a compact heat exchanger, Applied Thermal Engineering 29 (2009) 3609–3617 [CrossRef] [Google Scholar]
  14. Abhyuday Aditya, Prahar Sarkar and Pranibesh Mandal, Advances in Materials, Mechanical and Industrial Engineering. [Google Scholar]
  15. P.Suwanpinij, U.Prahl, W.Bleck, R.Kawalla, Fast algorithms for phase transformations in dual phase steels on a hot strip mill run-out table (ROT), ARCHIVESOF CIVIL AND MECHANICAL ENGINEERING 1 2 (2012) 3 0 5 – 3 1 1 [Google Scholar]
  16. Daniel Weisz-Patrault, Thomas Koedinger, Residual stress on the run out table accounting for multiphase transitions and transformation induced plasticity, Applied Mathematical Modelling 60 (2018) 18–33 [CrossRef] [Google Scholar]
  17. Adel Mahamood Hassan, Abdalla Alrashdan, Mohammed T. Hayajneh, Ahmad Turki Mayyas, Prediction of density, porosity and hardness in aluminum–copper-based composite materials using artificial neural network, JOURNAL OF MATERIALS PROCESSING TECHNOLOGY 2 0 9 (2009) 894–899 [Google Scholar]
  18. Manjunath Patel G.C, Arun Kumar Shettigarb, Prasad Krishnaa, Mahesh B. Parappagoudarc, Back propagation genetic and recurrent neural network applications in modelling and analysis of squeeze casting process, Applied Soft Computing 59 (2017) 418–437 [Google Scholar]
  19. Junghui Chen, Chien-Mao Liao, Dynamic process fault monitoring based on neural Network and PCA, Journal of Process Control 12 (2002) 277–289 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.