Open Access
MATEC Web Conf.
Volume 303, 2019
2019 3rd International Conference on Building Materials and Materials Engineering (ICBMM 2019)
Article Number 05003
Number of page(s) 7
Section Sustainable Concrete
Published online 12 December 2019
  1. Meyer, C. El enverdecimiento de la industria del hormigon. Cemento, Hormigon, 601–605, 2008. [Google Scholar]
  2. Eckert, M. Mitigation of the negative efects of recycled aggregate water absorption in concrete technology. Construction and Building Materials 133:416–424, 2017. [CrossRef] [Google Scholar]
  3. Yong, P. Utilization of Recycled Aggregate as Coarse Aggregate in Concrete. UNIMAS E-Journal of Civil Engieneering, 1–6, 2009. [Google Scholar]
  4. Gongbing Yuea, Qiuyi Lib, Jianlin Luo and Yuanxin Guod. Influence of Quality and Replacement Rate of Recycled Coarse Aggregate on the Frost Resistance of Recycled Concrete, 2019. [Google Scholar]
  5. Frondistou-Yannas S. Waste concrete as aggregate for new concrete. ACI Materials, 74, pp. 373–376, 1997. [Google Scholar]
  6. Qasarawi H, Shalabi F, Asi I. Use of low CaO unprocessed steel slag in concrete as fine aggregate, 2009. [Google Scholar]
  7. Malek Batayneh, Iqbal Marie, Ibrahim Asi. Use of selected waste materials in concrete mixes, 2007. [Google Scholar]
  8. Al-Jabri KS, Hisada M, Al-Oraimi SK, Al-Saidy AH. Copper slag as sand replacement for high performance concrete,2009. [Google Scholar]
  9. Said Djebali, Youcef Bouafia, Said Larbi, Ali Bilek. Mechanical Behavior of Steel-Chips-Reinforced Concrete, 2013. [Google Scholar]
  10. Koda, M. “Selfhealing capability of fiber reinforced cementitious composites”, Construction Materials through Science and Technology, Hong Kong, 2013. [Google Scholar]
  11. Handong Yan, Wei Sun, Huisu Chen. The effect of silica fume and steel fiber on the dynamic mechanical performance of high-strength concrete, 1999. [Google Scholar]
  12. R.V. Balendran, F.P. Zhou, A. Nadeem, A.Y.T. Leung. Influence of steel fibres on strength and ductility of normal and lightweight high strength concrete, 2001. [Google Scholar]
  13. P. Song, S. Hwang. Mechanical properties of high- strength steel fiber-reinforced concrete, 2004. [Google Scholar]
  14. V. Afroughsabet, T. Ozbakkaloglu. Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers, 2015. [Google Scholar]
  15. NTP 334.009:2016, Cementos. Cemento Pórtland. Requisitos. Modificación Técnica 1. 1ª Edición. Inacal, Lima 2017. [Google Scholar]
  16. Amercian Concrete Institute. Standard Practice for selecting proportions for normal Heavyweight, and Mass Concrete (ACI -211). 1997 [Google Scholar]
  17. NTP 339.033:2015 Concreto. Práctica normalizada para la elaboración y curado de especímenes de concreto en campo. 4ª Edición. Inacal, Lima 2016. [Google Scholar]
  18. NTP 400.037:2018 Agregados. Agregados para concreto. Requisitos. 4ª Edición. Inacal, Lima 2018. [Google Scholar]
  19. H. Qasrawi, I. Marie and H. Tantawi. Use of recycled concrete rubbles as coarse aggregate in concrete, 2012. [Google Scholar]
  20. Bahareh Hadavand, Reza Imaninasab. Assessing the infuence of construction and demolition waste materials on workability and mechanical properties of concrete using statistical analysis, 2018. [Google Scholar]
  21. Zainab Z. Ismail, Enas A. AL-Hashmi. Reuse of waste iron as a partial replacement of sand in concrete, 2008. [Google Scholar]
  22. Demirboga, R., Gu l, R. Production of high strength concrete by use of industrial by-products. Building and Environment 41, 1124–1127, 2006. [Google Scholar]
  23. Rai, A., Prabakar, J., Raju, C.B., Morchalle, R.K. Metallurgical slag as a component in blended cement. Construction and Building Materials 16, 489–494, 2002. [Google Scholar]
  24. Laxmi Kanta Saha, Vikash Kumar, Mathew Varghese and Anjan Saha. Experimental Study on Properties of Concrete by Partial Replacement of Fine Aggregates with Waste Steel Chips, 2018. [Google Scholar]
  25. Murali, G., Vardhan, C.M., Prabu, R.,Khan and Suresh, T., Experimental Investigation of Fibre Reinforced Concrete Using Waste Materials, 2012. [Google Scholar]
  26. NTP 400.012:2013 Agregados. Análisis granulométrico del agregado fino, grueso y global. 3ª Edición. Inacal, Lima 2018. [Google Scholar]
  27. ASTM C136. Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM International, 2014. [Google Scholar]
  28. NTP 339.185:2013, Agregados. Método de ensayo normalizado para contenido de humedad total evaporable de agregados por secado. 2ª Edición. Inacal, Lima 2018. [Google Scholar]
  29. ASTM C566. Standard Test Method for Total Evaporable Moisture Content of Aggregate by Drying. ASTM International, 2019. [Google Scholar]
  30. NTP 400.022:2013, Agregados. Método de ensayo normalizado para la densidad, la densidad relativa (peso específico) y absorción del agregado fino. 3a Edición. Inacal, Lima 2018. [Google Scholar]
  31. ASTM C128. Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. ASTM International, 2015. [Google Scholar]
  32. NTP 400.021:2013; Agregados. Método de ensayo normalizado para la densidad, la densidad relativa (peso específico) y absorción del agregado grueso. 3a Edición. Inacal, Lima 2018. [Google Scholar]
  33. ASTM C127. Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. ASTM International, 2015. [Google Scholar]
  34. NTP 400.017:2011, Agregados. Método de ensayo normalizado para determinar la masa por unidad de volumen o densidad (“Peso Unitario”) y los vacíos en los agregados. 3a. Edición. Inacal, Lima 2016. [Google Scholar]
  35. ASTM C29. Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate. ASTM International, 2017. [Google Scholar]
  36. NTP 339.035:2015, Concreto. Método de ensayo para la medición del asentamiento del concreto de Cemento Portland. 4a. Edición. Inacal, Lima 2015. [Google Scholar]
  37. ASTM C143. Standard Test Method for Slump of Hydraulic-Cement Concrete. ASTM International, 2015. [Google Scholar]
  38. NTP 339.046:2008, Concreto. Método de ensayo para determinar la densidad (peso unitario), rendimiento y contenido de aire (método gravimétrico) del concreto. 2ª Edición. Inacal, Lima 2018. [Google Scholar]
  39. ASTM C138. Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete. ASTM International, 2017. [Google Scholar]
  40. NTP 330.034:2015, Concreto. Método de ensayo normalizado para la determinación de la resistencia a la compresión del concreto en muestras cilíndricas. 4ª Edición. Inacal, Lima 2015. [Google Scholar]
  41. ASTM C39. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, 2018. [Google Scholar]
  42. NTP339.084:2012, Concreto. Método de ensayo normalizado para la determinación de la resistencia a tracción simple del concreto, por compresión diametral de una probeta cilíndrica. Inacal, Lima 2018.} [Google Scholar]
  43. ASTM C496. Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International, 2017. [Google Scholar]
  44. NTP339.079:2012, Concreto. Método de ensayo para determinar la resistencia a la flexión del concreto en vigas simplemente apoyadas con cargas en el centro del tramo. 3ª Edición.. Inacal, Lima 2017. [Google Scholar]
  45. ASTM C78. Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). ASTM International, 2018. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.