Open Access
MATEC Web Conf.
Volume 303, 2019
2019 3rd International Conference on Building Materials and Materials Engineering (ICBMM 2019)
Article Number 05002
Number of page(s) 7
Section Sustainable Concrete
Published online 12 December 2019
  1. G. Civilízate, “Emisiones de Carbono por parte de la industria del cemento vs cemento verde,” CIV, pp. 1-2, 2006. [Google Scholar]
  2. A. A. Zaid and O. Ganiyat, “Comparative utilization of biodegraded and undegraded rice husk in Clarias gariepinus diet,” African Journal of Biotechnology, vol. 8, no. 7, pp. 1358-1362, 06 Abril 2009. [Google Scholar]
  3. Y. Safa and H. Bhatti, “Adsorptive removal of direct dyes by low cost rice husk: Effect of treatments and modifications,” African Journal of Biotechnology, vol. 10, no. 16, pp. 3128-3142, Mayo 2011. [CrossRef] [Google Scholar]
  4. B. Singh, “Rice husk ash,” Waste and Supplementary Cementitious Materials in Concrete, pp. 417-460, 2018. [CrossRef] [Google Scholar]
  5. J. Smith, “Types of marine concrete structures,” Marine Concrete Structures, pp. 17-64, 2016. [Google Scholar]
  6. H. Baorong, L. Xiaogang and X. Ma, “The cost of corrosion in China,” Materials Degradation, vol. 1, no. 4, 25 Julio 2017. [CrossRef] [Google Scholar]
  7. ACI Committee 221, “State of the Art Report on Alkali Aggregate Reactivity,” American Concrete Institute, 1998. [Google Scholar]
  8. I. Ioannou, R. Fournari and M. F. Petrou, “Testing the soundness of aggregates using different methodologies”, Construction and Building Materials, vol. 40, pp. 60-610, 2013. [CrossRef] [Google Scholar]
  9. S. Abbas, “Potential of rice husk ash for mitigating the alkali-silica reaction in mortar bars incorporating reactive aggregates,” Construction and Building Materials, vol. 132, no. 1, pp. 61-70, 2017. [CrossRef] [EDP Sciences] [Google Scholar]
  10. J. Zuquan, Z. Xia, Z. Tiejun and L. Jianqing, “Chloride ions transportation behavior and binding capacity of concrete exposed to different marine corrosion zones,” Construction and Building Materials, vol. 177, pp. 170-183, 2018. [CrossRef] [Google Scholar]
  11. L. Dawang, “Chloride diffusion model for concrete in marine environment with considering binding effect,” Marine Structures, vol. 66, pp. 44-51, 2019. [CrossRef] [Google Scholar]
  12. K. D. O. Ravindra, “10 - Recycled Aggregate Concrete: Durability Properties,” Sustainable Construction Materials, pp. 365-418, 2019. [Google Scholar]
  13. K. Shicong and C. S. Poon, “Compressive strength, pore size distribution and chloride-ion penetration of recycled aggregate concrete incorporating class-F fly ash,” Journal of Wuhan University of Technology- Materials, vol. 21, no. 4, pp. 130-136, 2006. [CrossRef] [Google Scholar]
  14. A. R. Mustaqqim, M. I. Norlia, I. Zulliza, G. Zuhayr Md, S. Shahiron, L. R. Nur, A. S. Liyana and N. F. Isa, “Properties Of Concrete With Different Percentange Of The Rice Husk Ash (RHA) As Partial Cement Replacement,” Materials Science Forum, vol. 803, pp. 288-293, 2015. [Google Scholar]
  15. R. Sumrerng and C. Prinya, “Use of Rice Husk-Bark Ash in Producing Self-Compacting Concrete,” Hindawi Publishing Corporation, vol. 2014, p. 6, Enero 2014. [Google Scholar]
  16. ACI Committee 211, “Guide for Selecting Proportions for No-Slump Concrete,” American Concreto Institute, Estados Unidos, 2009. [Google Scholar]
  17. ASTM International C88, Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate or Magnesium Sulfate, West, 2018. [Google Scholar]
  18. ASTM International C39, Método de Ensayo Normalizado para Resistencia a la Compresión de Especímenes Cilíndricos de Concreto., ASTM, 2018. [Google Scholar]
  19. ASTM International C1202 – 12, Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration, 2018. [Google Scholar]
  20. L. N. Tiusabá, N. Borda, A. Rivera and L. A. Moreno, “Solidez de los Agregados Pétreos Mediante la Adición de Sulfato de Magnesio,” Ingeniería e Innovación, vol. 3, no. 2, 25 Julio 2015. [Google Scholar]
  21. B. Reddy, “Effect of rice husk ash on the properties of ordinary portland cement and portland slag cement with and without superplasticiers,” Trans Stellar, pp. 1-8, 2013. [Google Scholar]
  22. S. Antiohos, S. Tsimas and V. Papadakis, “Rice husk ash (RHA) effectiveness in cement and concrete as a function of reactive silica and fineness,” Cement and Concrete Research, Vols. 61-62, pp. 20-27, Julio 2014. [CrossRef] [Google Scholar]
  23. R. Sumrerng and C. Prinya, “Utilization of bagasse ash in high-strength concrete,” Materials & Design, vol. 34, pp. 45-50, Febrero 2012. [CrossRef] [Google Scholar]
  24. T. S. P. S. y. C. J. W. Chalee, “Utilization of rice husk–bark ash to improve the corrosion resistance of concrete under 5-year exposure in a marine environment,” Cement & Concrete Composites, vol. 37, pp. 47-53, Marzo 2013. [CrossRef] [Google Scholar]
  25. J. Sainz-Aja, I. Carrascal, J. A. Polanco, C. Thomas, I. Sosa and J. Casado, “Self-compacting recycled aggregate concrete using out-of-service railway superstructure wastes,” Journal of Cleaner Production, vol. 230, pp. 945-955, 01 September 2019. [CrossRef] [Google Scholar]
  26. L. Caneda-Martínez, C. Medina, M. I. Sánchez de Rojas and M. Frías, “Water transport in binary eco- cements containing coal mining waste,” Cement and Concrete Composites, vol. 104, p. 103373, Noviembre 2019. [CrossRef] [Google Scholar]
  27. C. Medina, M. I. Sánchez de Rojas and M. Frías, “Properties of recycled ceramic aggregate concretes: Water resistance,” Cement and Concrete Composites, vol. 40, pp. 21-29, Julio 2013. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.