Open Access
MATEC Web Conf.
Volume 300, 2019
ICMFF12 - 12th International Conference on Multiaxial Fatigue and Fracture
Article Number 16007
Number of page(s) 9
Section Strength Criteria
Published online 02 December 2019
  1. R.I. Stephens, A. Fatemi, R.R. Stephens, and H.O. Fuchs, Metal fatigue in engineering, John Wiley & Sons, (2000) [Google Scholar]
  2. H.C. Wu, C. Yang, “On the influence of strain path in multiaxial fatigue failure.” J. Eng. Mater. Technol., 109, 107-115 (1987) [CrossRef] [Google Scholar]
  3. P. Kurath, Y. Jiang, and A. Fatemi, “Strain-path influence on multiaxial deformation and fatigue damage.” SAE AE-28, 117-140 (1999) [Google Scholar]
  4. S. Subramaninan, A. Fatemi, “Strain-path influence on multiaxial fatigue cracking.” Proceedings of the Fourth International Conference on Fatigue and Fatigue Thresholds, 1, 399-404 (1990) [Google Scholar]
  5. E. H. Jordan, M.W. Brown, and K.J. Miller, “Fatigue under severe nonproportional loading.” Multiaxial fatigue, ASTM International, 569-585 (1985) [CrossRef] [Google Scholar]
  6. C. Wang, M. Brown, “A path‐independent parameter for fatigue under proportional and non‐proportional loading.” Fatigue. Fract. Eng. Mater. Struct., 16(12), 1285-1297 (1993) [Google Scholar]
  7. C. Wang, M. Brown, “Life prediction techniques for variable amplitude multiaxial fatigue—part 1: theories.” J. Eng. Mater. Technol., 118(3), 367-370 (1996) [CrossRef] [Google Scholar]
  8. Y. Wang, L. Susmel, “The Modified Manson–Coffin Curve method to estimate fatigue lifetime under complex constant and variable amplitude multiaxial fatigue loading.” Int. J. Fatigue., 83, 135-149 (2016) [Google Scholar]
  9. L. Susmel, G. Meneghetti, and B. Atzori, “A simple and efficient reformulation of the classical manson–coffin curve to predict lifetime under multiaxial fatigue loading—part I: Plain materials.” J. Eng. Mater. Technol., 131(2), 021009 (2009) [Google Scholar]
  10. Y. Wang, N.Z. Faruq, and L. Susmel, “Evaluation of different techniques in estimating orientation of crack initiation planes and fatigue lifetime under complex multiaxial loading paths.” Int. J. Fatigue., 100, 521-529 (2017) [CrossRef] [Google Scholar]
  11. K. Kim, J. Park, and J. Lee, “Multiaxial fatigue under variable amplitude loads.” J. Eng. Mater. Technol., 121(3), 286-293 (1999) [CrossRef] [Google Scholar]
  12. N. Shamsaei, A. Fatemi, and D.F. Socie, “Multiaxial fatigue evaluation using discriminating strain paths.” Int. J. Fatigue., 33(4), 597-609 (2011) [CrossRef] [Google Scholar]
  13. N. Shamsaei, M. Gladskyi, K. Panasovskyi, S. Shukaev, and A. Fatemi, “Multiaxial fatigue of titanium including step loading and load path alteration and sequence effects.” Int. J. Fatigue., 32(11), 862-1874 (2010) [Google Scholar]
  14. A. Fatemi, D.F. Socie, “A critical plane approach to multiaxial fatigue damage including out‐of‐phase loading.” Fatigue. Fract. Eng. Mater. Struct., 11(3), 149-165 (1988) [Google Scholar]
  15. N. R. Gates, A. Fatemi, “On the consideration of normal and shear stress interaction in multiaxial fatigue damage analysis.” Int. J. Fatigue., 100, 322-336 (2017) [Google Scholar]
  16. T. Hoshide, D. Socie, “Mechanics of mixed mode small fatigue crack growth.” Eng. Fract. Mech., 26(6), 841-850 (1987) [CrossRef] [Google Scholar]
  17. S. Wong, P. Bold, M. Brown, and R. Allen, “A branch criterion for shallow angled rolling contact fatigue cracks in rails.” Wear, 191(1-2), 45-53 (1996) [CrossRef] [Google Scholar]
  18. S. Wong, P. Bold, M. Brown, and R. Allen, “Fatigue crack growth rates under sequential mixed‐mode I and II loading cycles.” Fatigue. Fract. Eng. Mater. Struct., 23(8), 667-674 (2000) [CrossRef] [Google Scholar]
  19. V. Doquet, S. Pommier, “Fatigue crack growth under non‐proportional mixed‐mode loading in ferritic‐pearlitic steel.” Fatigue. Fract. Eng. Mater. Struct., 27(11), 1051-1060 (2004) [CrossRef] [Google Scholar]
  20. ASTM-E2207-15, “Standard practice for strain-controlled axial-torsional fatigue testing with thin-walled tubular specimens.” Annual Book of ASTM Standards, 03.01 (2017) [Google Scholar]
  21. S. Sharifimehr, A. Fatemi, “Fatigue analysis of ductile and brittle behaving steels under variable amplitude multiaxial loading.” Fatigue. Fract. Eng. Mater. Struct. 1-21 (2019) [Google Scholar]
  22. A. Fatemi, R. Molaei, S. Sharifimehr, N. Phan, and N. Shamsaei, “Multiaxial fatigue behavior of wrought and additive manufactured Ti-6Al-4V including surface finish effect.” Int. J. Fatigue., 100, 347-366 (2017) [CrossRef] [Google Scholar]
  23. S. Sharifimehr, A. Fatemi, “On the interaction of normal and shear stresses in multiaxial fatigue damage.” Fatigue. Fract. Eng. Mater. Struct., accepted (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.