Open Access
MATEC Web Conf.
Volume 300, 2019
ICMFF12 - 12th International Conference on Multiaxial Fatigue and Fracture
Article Number 07004
Number of page(s) 9
Section High Temperature
Published online 02 December 2019
  1. Pollock, T.M and Tin, S. Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties. Journal of Propulsion and Power, 22: 361374 (2006). [CrossRef] [Google Scholar]
  2. Koch, J.L. Proportional and non-proportional biaxial fatigue of Inconel 718. PhD thesis, University of Illinois, Department of Mechanical Engineering. 1985. [Google Scholar]
  3. Mahobia, G.S., Paulose, N., Mannan, S.L., Sudhakar, R.G., Chattopadhyay, K., Santhi Srinivas, N.C., Singh, V. Effect of hot corrosion on low cycle fatigue behavior of superalloy IN718. International Journal of Fatigue, 59: 272-281 (2014). [CrossRef] [Google Scholar]
  4. G. Chen and Y. Zhang and D.K. Xu and Y.C. Lin and X. Chen. Low cycle fatigue and creep-fatigue interaction behavior of nickel-base superalloy GH4169 at elevated temperature of 650°C. Materials Science and Engineering: A, 655: 175-182 (2016). [CrossRef] [Google Scholar]
  5. Evans, W. and Screech, J. and Williams, S. Thermo-mechanical fatigue and fracture of INCO718. International Journal of Fatigue, 30: 257-267 (2008). [CrossRef] [Google Scholar]
  6. Bauer, V. and Christ, H. J. Thermomechanical fatigue behaviour of a third generation TiAl intermetallic alloy. Intermetallics, 17: 370-377 (2009). [CrossRef] [Google Scholar]
  7. D. Kulawinski and A. Weidner and S. Henkel and H. Biermann. Isothermal and thermomechanical fatigue behavior of the nickel base superalloy WaspaloyTM under uniaxial and biaxial-planar loading. International Journal of Fatigue, 81: 21-36 (2015). [CrossRef] [Google Scholar]
  8. M. Schlesinger and T. Seifert and J. Preussner. Experimental investigation of the time and temperature dependent growth of fatigue cracks in Inconel 718 and mechanism based lifetime prediction. International Journal of Fatigue, 99: 242-249 (2017). [CrossRef] [Google Scholar]
  9. W. Deng and J. Xu and Y. Hu and Z. Huang and L. Jiang. Isothermal and thermomechanical fatigue behavior of Inconel 718 superalloy. Materials Science and Engineering: A, 742: 813-819 (2019). [CrossRef] [Google Scholar]
  10. J. Sun and H. Yuan. Life assessment of multiaxial thermomechanical fatigue of a nickelbased superalloy Inconel 718. International Journal of Fatigue, 120: 228-240 (2019). [CrossRef] [Google Scholar]
  11. T. Brendel and E. Affeldt and J. Hammer and C. Rummel. Temperature gradients in TMF specimens. Measurement and influence on TMF life. International Journal of Fatigue, 2:234-240 (2008). [CrossRef] [Google Scholar]
  12. K. Prasad and V. Kumar. Temperature gradients in flat thermomechanical fatigue specimens. Applied Thermal Engineering, 59: 131-133 (2013) [CrossRef] [Google Scholar]
  13. B. Baufeld and M. Bartsch and M. Heinzelmann. Advanced thermal gradient mechanical fatigue testing of CMSX-4 with an oxidation protection coating, International Journal of Fatigue, 30: 219-225 (2008). [CrossRef] [Google Scholar]
  14. M. Bartsch and B. Baufeld and S. Dalkiliç and L. Chernova and M. Heinzelmann. Fatigue cracks in a thermal barrier coating system on a superalloy in multiaxial thermomechanical testing. International Journal of Fatigue, 30: 211-218 (2008). [CrossRef] [Google Scholar]
  15. J. Wang and Z. Moumni and W. Zhang. A thermomechanically coupled finite-strain constitutive model for cyclic pseudoelasticity of polycrystalline shape memory alloys. International Journal of Plasticity. 97: 194-221 (2017). [CrossRef] [Google Scholar]
  16. J. Sun and H. Yuan. Cyclic plasticity modeling of nickel-based superalloy Inconel 718 under multi-axial thermo-mechanical fatigue loading conditions. International Journal of Fatigue, 119: 89-101 (2019) [CrossRef] [Google Scholar]
  17. J. Sun and H. Yuan. Thermal gradient mechanical fatigue assessment of a nickel-based superalloy. Submitted for publication (2019) [Google Scholar]
  18. C.H. Wang and M.W. Brown. A path-independent parameter for fatigue under proportional and non-proportional loading. Fatigue and Fracture of Engineering Materials and Structures, 16:1285-1297 (1993). [Google Scholar]
  19. A. Fatemi, D.F. Socie. A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue and Fracture of Engineering Materials and Structures, 11:149-165 (1988). [Google Scholar]
  20. K.N. Smith, P. Watson, T.H. Topper. A Stress-Strain Function for the Fatigue of Metals. Journal of Materials, 5:767-778 (1970). [Google Scholar]
  21. C.C. Chu, F.A. Conle, J.J.F. Bonnen. Multiaxial stress-strain modeling and fatigue life prediction of SAE axle shafts. Advances in Multiaxial Fatigue, ASTM STP 1191, p. 3754, 1993. [Google Scholar]
  22. K.C. Liu. A method based on virtual strain-energy parameters for multiaxial fatigue life prediction. Advances in Multiaxial Fatigue, ASTM STP 1191, p. 67-84, 1993. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.