Open Access
MATEC Web Conf.
Volume 300, 2019
ICMFF12 - 12th International Conference on Multiaxial Fatigue and Fracture
Article Number 03002
Number of page(s) 9
Section Additive Manufacturing
Published online 02 December 2019
  1. L.J. Gibson, M.F. Ashby, Cellular solids: structure and properties, Cambridge university press (1999) [Google Scholar]
  2. A.J. Wang, D.L. McDowell. In-plane stiffness and yield strength of periodic metal honeycombs. J Eng Mater-T ASME, 126(2): 137–156 (2004) [CrossRef] [Google Scholar]
  3. S. Prabhu, V.K. Rajan, R. Nikhil. Applications of Cellular Materials-An Overview. Appl Mech Mater, 766: 511–517 (2015) [CrossRef] [Google Scholar]
  4. F. Li, J. Li, T. Huang, H. Kou, L. Zhou. Compression fatigue behavior and failure mechanism of porous titanium for biomedical applications. J Mech Behav Biomed Mater, 65: 814–823 (2017) [CrossRef] [Google Scholar]
  5. N.A. Fleck, X.M. Qiu. The damage tolerance of elastic–brittle, two-dimensional isotropic lattices. J Mech Phys Solids, 55(3): 562–588 (2007) [CrossRef] [Google Scholar]
  6. X. Qiu, L. He, Y. Qian, X. Zhang. Plastic zone of semi-infinite crack in planar kagome and triangular lattices. Acta Mech Solida Sin, 22(3): 213–225(2009) [CrossRef] [Google Scholar]
  7. H.C. Tankasala, V.S. Deshpande, N.A. Fleck. Crack-Tip Fields and Toughness of Two-Dimensional Elasto-Plastic Lattices. J Appl Mech-T ASME, 82(9): 1–10 (2015) [CrossRef] [Google Scholar]
  8. C. Chen, T.J. Lu, N.A. Fleck. Effect of imperfections on the yielding of two-dimensional foams. J Mech Phys Solids, 47(11): 2235–2272 (1999) [CrossRef] [Google Scholar]
  9. H. Gu, M. Pavier, A. Shterenlikht. Experimental study of modulus, strength and toughness of 2D triangular lattices. Int J Solids Struct, 152: 207–216 (2018) [CrossRef] [Google Scholar]
  10. O.B. Olurin, K.Y.G. McCullough, N.A. Fleck, M.F. Ashby. Fatigue crack propagation in aluminium alloy foams. Int J Fatigue, 23(5): 375–382 (2001) [CrossRef] [Google Scholar]
  11. A. Shipsha, M. Burman, D. Zenkert. On mode I fatigue crack growth in foam core materials for sandwich structures. J Sandw Struct Mater, 2(2): 103–116 (2000) [CrossRef] [Google Scholar]
  12. D. Zenkert, M. Burman. Fatigue of closed cell foams. J Sandw Struct Mater, 13(4): 467–478 (2011) [CrossRef] [Google Scholar]
  13. M.W. Wu, J.K. Chen, B.H. Lin, P.H. Chiang. Improved fatigue endurance ratio of additive manufactured Ti-6Al-4V lattice by hot isostatic pressing. Mater. Des, 134: 163–170 (2017) [CrossRef] [Google Scholar]
  14. S.A. Yavari, S.M. Ahmadi, R. Wauthle, B. Pouran, J. Schrooten, H. Weinans, A.A. Zadpoor. Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials. J Mech Behav Biomed Mater, 43: 91–100 (2015) [CrossRef] [Google Scholar]
  15. S. Zhao, S.J. Li, W.T. Hou, Y.L. Hao, R. Yang, R.D.K Misra. The influence of cell morphology on the compressive fatigue behavior of Ti-6Al-4V meshes fabricated by electron beam melting. J Mech Behav Biomed Mater, 59: 251–264 (2016) [CrossRef] [Google Scholar]
  16. S.A. Yavari, R. Wauthlé, J. Stok, et al. Fatigue behaviour of porous biomaterials manufactured using selective laser melting. Mater. Sci. Eng. C., 33(8): 4849–4858 (2013) [CrossRef] [Google Scholar]
  17. M.F. Ashby, D.R.H. Jones, Engineering materials 1: an introduction to properties, applications and design. Elsevier (2012) [Google Scholar]
  18. T.J. Spradlin, R.V. Grandhi, K. Langer. Experimental validation of simulated fatigue life estimates in laser-peened aluminium. Int. J. Struct. Integr., 2(1): 74–86 (2011) [CrossRef] [Google Scholar]
  19. G. Fajdiga, M. Sraml. Fatigue crack initiation and propagation under cyclic contact loading. Eng Fract Mech, 76(9): 1320–1335 (2009) [CrossRef] [Google Scholar]
  20. Fe-safe, Fatigue theory reference manual-Volume 2. Safe Technology Limited (2017) [Google Scholar]
  21. W. Cui. A state-of-the-art review on fatigue life prediction methods for metal structures. J Mar Sci Technol, 7(1): 43–56 (2002) [CrossRef] [Google Scholar]
  22. M. Miner. Cumulative damage in fatigue. J Appl Mech-T ASME, 67: A159–164 (1945) [Google Scholar]
  23. F. Gharbi, S. Sghaier, H. Hamdi, T. Benameur. Ductility improvement of aluminum 1050A rolled sheet by a newly designed ball burnishing tool device. Int J Adv Manuf Tech, 60(1-4): 87–99 (2012) [CrossRef] [Google Scholar]
  24. P. Paris, F. Erdogan. A critical analysis of crack propagation laws. J Basic Eng-T ASME, 85(4): 528–533 (1963) [Google Scholar]
  25. ASTM, Standard test method for measurement of fatigue crack growth rates, in: E647 – 15, United States (2015) [Google Scholar]
  26. S.B. Biner. Fatigue crack growth studies under mixed-mode loading. Int J Fatigue, 23: 259–263 (2001) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.