Open Access
MATEC Web Conf.
Volume 300, 2019
ICMFF12 - 12th International Conference on Multiaxial Fatigue and Fracture
Article Number 02002
Number of page(s) 13
Section Keynote
Published online 02 December 2019
  1. J. A. Araújo, D. Nowell, The effect of rapidly varying contact stress fields on fretting fatigue, Int. J. Fatigue, 24, 763-775, (2002) [CrossRef] [Google Scholar]
  2. O. Vingsbo, S. Söderberg, On fretting maps, Wear, 126, 131-147 (1988) [Google Scholar]
  3. T. Hattori, M. Nakamura, T. Watanabe, Simulation of fretting-fatigue life by using stress-singularity parameters and fracture mechanics, Tribology International, 36: 87–97 (2003) [CrossRef] [Google Scholar]
  4. C. Navarro, S. Muñoz, J. Dominguez, On the use of multiaxial fatigue criteria for fretting fatigue life assessment, Int. J. Fatigue, 30, 32-44 (2008) [CrossRef] [Google Scholar]
  5. J. A. Araújo, L. Susmel, M. S. T. Pires, F. C. Castro, A multiaxial stressbased critical distance methodology to estimate fretting fatigue life, 108, 2-7 (2017) [Google Scholar]
  6. I. R. McColl, J. Ding, S. B. Leen, Finite element simulation and experimental validation of fretting wear, Wear, 256, 1114-1127 (2004) [CrossRef] [Google Scholar]
  7. J. Ding, S. B. Leen, I. R. McColl, The effect of slip regime on fretting wear-induced stress evolution Int. J. Fatigue, 26, 521-531 (2004) [CrossRef] [Google Scholar]
  8. J. J. Madge, S. B. Leen, P. H. Shipway, Contact-evolution based prediction of fretting fatigue life: effect of slip amplitude, Wear, 263, 542-551 (2007) [CrossRef] [Google Scholar]
  9. A. Cruzado, S. B. Leen, M. A. Urchegui, X. Gómez, Finite element simulation of fretting wear and fatigue in thin steel wires, Int. J. Fatigue, 55, 7-21 (2013) [CrossRef] [Google Scholar]
  10. S. Garcin, S. Fouvry, S. Heredia, A fem fretting map modeling: Effect of surface wear on crack nucleation, Wear, 330, 145-159 (2015) [CrossRef] [Google Scholar]
  11. S. Fouvry, T. Liskiewicz, T. Kapsa, S. Hannel, E. Sauger, An energy description of wear mechanisms and its applications to oscillating sliding contacts, Wear, 255, 287-298 (2003) [CrossRef] [Google Scholar]
  12. J. A. Araújo, B. Ferry, C. Montebello, J. Meriaux, S. Pommier, Studies of size effects in fretting fatigue, Tribol. Int, (submmitted for publication) [Google Scholar]
  13. R. A. Cardoso, T. Doca, D, Néron, S. Pommier, J. A. Araújo, Wear numerical assessment for partial slip fretting fatigue conditions. Tribol. Int (submmitted for publication) [Google Scholar]
  14. E. N. Mamiya, J. A. Araújo, F. C. Castro, Prismatic hull: a new measure of shear stress amplitude in multiaxial high cycle fatigue, Int. J. Fatigue, 31, 1144-1153, (2009) [CrossRef] [Google Scholar]
  15. F. C. Castro, J. A. Araújo, N. Zouain, On the application of multiaxial high-cycle fatigue criteria using the theory of critical distances. Engng. Fract. Mech, 76, 512-524, (2009). [CrossRef] [Google Scholar]
  16. J. A. Araújo, A. P. Dantas, F. C. Castro, E. N. Mamiya, J. L. A. Ferreira, On the characterization of the critical plane with a simple and fast alternative measure of the shear stress amplitude in multiaxial fatigue, Int. J. Fatigue, 32, 1092-1100, (2011) [CrossRef] [Google Scholar]
  17. R. A. Cardoso, J. A. Araújo, J. L. A. Ferreira, F. C. Castro, Crack path simulation for cylindrical contact under fretting conditions, Frattura ed Integrità Structurale, 35, 405-413, (2016) [Google Scholar]
  18. G. M. J. Almeida, F. C. Castro, Cardoso, J. A. Araújo, R. A., Investigation of early crack orientation in Al 7050-T7451 under fretting conditions. Tribol. Int (submmitted for publication), (2019) [Google Scholar]
  19. S. Vantadori, G. M. J. Almeida, G. Fortese, G. C. V. Pessoa, J. A. Araújo, Early fretting crack orientation by using the critical plane approach, Int. J. Fatigue, 114 (2018) [Google Scholar]
  20. J. A. Araújo, G. M. J. Almeida, J. L. A. Ferrreira, C. R. M. da Silva, F. C. Castro, Early cracking orientation under high stress gradients: The fretting case, Int. J. Fatigue, 100 (2017) [Google Scholar]
  21. D. Taylor, Geometrical effects in fatigue: a unifying theoretical model, Int. J. Fatigue, 21, 413-420, (1999) [Google Scholar]
  22. J. A. Araújo, L. Susmel, D. Taylor, J. C. T. Ferro, J. L. A. Ferreira, On the prediction of high-cycle fretting fatigue strength: Theory of critical distances vs. hot-spot approach Engng. Fract. Mech, 75, 1763-1778, (2008) [CrossRef] [Google Scholar]
  23. L. Susmel, D. Taylor, Can the conventional high-cycle multiaxial fatigue criteria be re-interpreted in terms of the theory of critical distances, Struct. Durab. Health Monitor, 2, 91-108, (2006) [Google Scholar]
  24. S. Fatemi, D. N. Socie, A critical plane approach to multiaxial fatigue damage including out-of-phase loading, Fatigue Fract. Eng. Mater. Struct. 11, 149-165, (1988) [Google Scholar]
  25. R. N. Smith, P. Watson, T. H. Topper, A stress strain parameter for the fatigue of metal, Journal of Materials, J. Mater., 5, 767-778 (1970) [Google Scholar]
  26. L. Susmel, P. A. Lazzarin, A bi-parametric w¨ohler curve for high cycle multiaxial fatigue assessment, Fatigue Fract. Eng. Mater. Struct., 25, 63–78 (2002) [CrossRef] [Google Scholar]
  27. W. N. Findley, A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending, Engng Mat. Research Lab., Division of Engng, Brown University (1958) [Google Scholar]
  28. K. Dang Van, Sur la résistance à la fatigue des métaux., Sci, Tech. L’armement, 47, 429-453, (1973) [Google Scholar]
  29. A. R. Kallmeyer, A. Krgo, P. Kurath, J. Engng Mat. Technology, 124, 229-237, (2002) [CrossRef] [Google Scholar]
  30. A. Carpinteri, A. Spagnoli, S. Vantadori, Multiaxial fatigue assessment using a simplified critical plane-based criterion. I, Int. J. Fatigue, 33, 969-976, (2011) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.