Open Access
Issue
MATEC Web Conf.
Volume 300, 2019
ICMFF12 - 12th International Conference on Multiaxial Fatigue and Fracture
Article Number 01001
Number of page(s) 13
Section Plenary
DOI https://doi.org/10.1051/matecconf/201930001001
Published online 02 December 2019
  1. C. Lu, J. Melendez, and J. Martínez-Esnaola, A universally applicable multiaxial fatigue criterion in 2D cyclic loading. International Journal of Fatigue, 2018. 110: p. 95-104. [CrossRef] [Google Scholar]
  2. G. Facheris and K. Janssens, Cyclic mechanical behavior of 316L: uniaxial LCF and strain-controlled ratcheting tests. Nuclear Engineering and Design, 2013. 257: p. 100-108. [CrossRef] [Google Scholar]
  3. B.-R. You and S.-B. Lee, A critical review on multiaxial fatigue assessments of metals. International Journal of Fatigue, 1996. 18(4): p. 235-244. [CrossRef] [Google Scholar]
  4. S. Chattopadhyay, Investigation of proportional and non-proportional loadings using Mohr’s circle. 2012. [Google Scholar]
  5. K. Janssens, Proportionally and non-proportionally perturbed fatigue of stainless steel. International Journal of Fatigue, 2017. [Google Scholar]
  6. Z.-R. Wu, X.-T. Hu, and Y.-D. Song, Multiaxial fatigue life prediction for titanium alloy TC4 under proportional and nonproportional loading. International Journal of Fatigue, 2014. 59: p. 170-175. [CrossRef] [Google Scholar]
  7. K. Kanazawa, K. Miller, and M. Brown, Low-cycle fatigue under out-of-phase loading conditions. Journal of Engineering Materials and Technology, 1977. 99(3): p. 222-228. [CrossRef] [Google Scholar]
  8. Y. Xiong, Q. Yu, and Y. Jiang, Multiaxial fatigue of extruded AZ31B magnesium alloy. Materials Science and Engineering: A, 2012. 546: p. 119-128. [CrossRef] [Google Scholar]
  9. A. Carpinteril, E. Macha, R. Brighenti, et al., Critical fracture plane under multiaxial random loading by means of Euler angles averaging, in European Structural Integrity Society. 1999, Elsevier. p. 166-178. [Google Scholar]
  10. C. Lu, J. Melendez, and J. Martínez-Esnaola, Prediction of crack initiation plane direction in high-cycle multiaxial fatigue with in-phase and out-of-phase loading. Fatigue & Fracture of Engineering Materials & Structures, 2017. 40(12): p. 1994-2007. [CrossRef] [Google Scholar]
  11. D.-G. Shang, G.-Q. Sun, J. Deng, et al., Multiaxial fatigue damage parameter and life prediction for medium-carbon steel based on the critical plane approach. International Journal of Fatigue, 2007. 29(12): p. 2200-2207. [CrossRef] [Google Scholar]
  12. D. Collins, T. Erinosho, F. Dunne, et al., A synchrotron X-ray diffraction study of non-proportional strain-path effects. Acta Materialia, 2017. 124: p. 290-304. [CrossRef] [Google Scholar]
  13. F. Rotvel, Biaxial fatigue tests with zero mean stresses using tubular specimens. INTERNAT. J. MECH. SCI., 1970. 12(7): p. 597-613. [CrossRef] [Google Scholar]
  14. L. Reis, B. Li, and M. De Freitas, A multiaxial fatigue approach to Rolling Contact Fatigue in railways. International Journal of Fatigue, 2014. 67: p. 191-202. [CrossRef] [Google Scholar]
  15. C. Hua and D. Socie, Fatigue damage in 1045 steel under variable amplitude biaxial loading. Fatigue & Fracture of Engineering Materials & Structures, 1985. 8(2): p. 101-114. [CrossRef] [Google Scholar]
  16. S. Kalluri and P. J. Bonacuse, In-phase and out-of-phase axial-torsional fatigue behavior of haynes 188 superalloy at 760 C, in Advances in multiaxial fatigue. 1993, ASTM International. [Google Scholar]
  17. D. F. Socie and G. B. Marquis, Multiaxial fatigue. 2000: Society of Automotive Engineers Warrendale, PA. [Google Scholar]
  18. D. Shi, J. Huang, X. Yang, et al., Effects of crystallographic orientations and dwell types on low cycle fatigue and life modeling of a SC superalloy. International Journal of Fatigue, 2013. 49: p. 31-39. [CrossRef] [Google Scholar]
  19. M. W. Brown and K. Miller, A theory for fatigue failure under multiaxial stress-strain conditions. Proceedings of the Institution of Mechanical Engineers, 1973. 187(1): p. 745-755. [CrossRef] [Google Scholar]
  20. A. Fatemi and D. F. Socie, A Critical Plane Approach to Multiaxial Fatigue Damage Including out-of-Phase Loading. Fatigue & Fracture of Engineering Materials & Structures, 1988. 11(3): p. 149-165. [Google Scholar]
  21. C. Wang and M. Brown, A path-independent parameter for fatigue under proportional and non-proportional loading. Fatigue & fracture of engineering materials & structures, 1993. 16(12): p. 1285-1297. [CrossRef] [Google Scholar]
  22. K. Kim and J. Park, Shear strain based multiaxial fatigue parameters applied to variable amplitude loading. International Journal of Fatigue, 1999. 21(5): p. 475-483. [CrossRef] [Google Scholar]
  23. M. W. Brown and K. J. Miller, Mode I fatigue crack growth under biaxial stress at room and elevated temperature, in Multiaxial fatigue. 1985, ASTM International. [Google Scholar]
  24. B. Lee, K. Kim, and K. Nam, Fatigue analysis under variable amplitude loading using an energy parameter. International Journal of Fatigue, 2003. 25(7): p. 621-631. [CrossRef] [Google Scholar]
  25. M. Noban, H. Jahed, S. Winkler, et al., Fatigue characterization and modeling of 30CrNiMo8HH under multiaxial loading. Materials Science and Engineering: A, 2011. 528(6): p. 2484-2494. [CrossRef] [Google Scholar]
  26. R. Branco, P. Prates, J. Costa, et al., New methodology of fatigue life evaluation for multiaxially loaded notched components based on two uniaxial strain-controlled tests. International Journal of Fatigue, 2018. 111: p. 308-320. [CrossRef] [Google Scholar]
  27. F. Berto, P. Gallo, and P. Lazzarin, High temperature fatigue tests of un-notched and notched specimens made of 40CrMoV13. 9 steel. Materials & Design, 2014. 63: p. 609-619. [CrossRef] [Google Scholar]
  28. A. Carpinteri, C. Ronchei, D. Scorza, et al., Fatigue life estimation for multiaxial low-cycle fatigue regime: the influence of the effective Poisson ratio value. Theoretical and Applied Fracture Mechanics, 2015. 79: p. 77-83. [CrossRef] [Google Scholar]
  29. B. Chen, J. Jiang, and F. P. Dunne, Microstructurally-sensitive fatigue crack nucleation in Ni-based single and oligo crystals. Journal of the Mechanics and Physics of Solids, 2017. 106: p. 15-33. [CrossRef] [Google Scholar]
  30. B. Chen, J. Jiang, and F. P. Dunne, Is stored energy density the primary meso-scale mechanistic driver for fatigue crack nucleation? International Journal of Plasticity, 2018. 101: p. 213-229. [CrossRef] [Google Scholar]
  31. V. Wan, D. MacLachlan, and F. Dunne, A stored energy criterion for fatigue crack nucleation in polycrystals. International Journal of Fatigue, 2014. 68: p. 90-102. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.