Open Access
Issue
MATEC Web Conf.
Volume 292, 2019
23rd International Conference on Circuits, Systems, Communications and Computers (CSCC 2019)
Article Number 04007
Number of page(s) 9
Section Signal Processing
DOI https://doi.org/10.1051/matecconf/201929204007
Published online 24 September 2019
  1. S. Roman, Lattices and Ordered Sets (Springer Verlag, New York, NY, 2008). [Google Scholar]
  2. G. Grätzer, Lattice Theory: Foundation (Birkhäuser-Springer Basel, Berlin, 2011). [Google Scholar]
  3. G. X. Ritter, P. Sussner, and J. L. Diaz de Leon, “Morphological associative memories,” IEEE Transactions on Neural Networks, 9 (2), 281–293 (1998). [CrossRef] [Google Scholar]
  4. R. Cuninghame-Green, “Minimax Algebra and Applications,” in Advances in Imaging and Electron Physics 90, P. Hawkes (Academic Press, New York, NY, 1995), 1–121. [Google Scholar]
  5. G. X. Ritter, “Lattice algebra” and “Minimax algebra,” in Image Algebra, unpublished manuscript available via anonymous ftp from https://www.cise.ufl.edu/Ȉjnw/CVAIIA/ (University of Florida, CCVV/CISE Department, Gainesville, FL, 1999) 121–135. [Google Scholar]
  6. G. X. Ritter and P. Gader, “Fixed Points of Lattice Transforms and Lattice Associative Memories,” in Advances in Imaging and Electron Physics 144, P. Hawkes (Elsevier, 2006), 165–242. [CrossRef] [Google Scholar]
  7. P. Sussner, “Observations on morphological associative memories and the kernel method,” Neurocomputing, 31(1)-(4), 167–183 (2000). [CrossRef] [Google Scholar]
  8. P. Sussner, “Associative morphological memories based on variations of the kernel and dual kernel methods,” Neural Networks, 16, 625–632 (2003). Jul. 2003. [CrossRef] [Google Scholar]
  9. G. X. Ritter, G. Urcid, and L. Iancu, “Reconstruction of noisy patterns using morphological associative memories,” Journal of Mathematical Imaging and Vision, 19 (5), 95–111 (2003). [CrossRef] [Google Scholar]
  10. G. Urcid, “Kernel computation in morphological associative memories for grayscale image recollection,” IASTED Proceedings 5th International Conference on Signal and Image Processing, 450–455 (2003). [Google Scholar]
  11. P. Sussner, “Recall of patterns using binary and gray-scale autoassociative morphological memories,” Proceedings of SPIE: Mathematical Methods in Pattern and Image Analysis, 5916, 59160M:1–10 (2005). [Google Scholar]
  12. G. Urcid and G. X. Ritter, “Noise masking for pattern recall using a single lattice matrix auto-associative memory,” Proceedings 2006 IEEE International Conference on Fuzzy Systems, 187–194 (2006). [CrossRef] [Google Scholar]
  13. G. Urcid and G. X. Ritter, Noise Masking for Pattern Recall using a Single Lattice Matrix Associative Memory,” in Studies in Computational Intelligence, 67 (Springer, Berlin, 2007), 81–100. [Google Scholar]
  14. G. Urcid, J.A. Nieves-V., A. Garcia-A., and J.C. Valdiviezo-N., “Robust image retrieval from noisy inputs using lattice associative memories,” Proceedings of SPIE-IS&T Electronic Imaging: Image Processing, Algorithms and Systems VII, 7245, 724517: 1–12 (2009). [Google Scholar]
  15. M. E. Valle, “An introduction to the max-plus projection autoassociative morphological memory and some of its variations,” Proceedings 2014 IEEE International Conference on Fuzzy Systems, 53–60 (2014). [CrossRef] [Google Scholar]
  16. A. S. Santos and M. E. Valle, “A fast and robust max C projection fuzzy autoassociative memory with application for face recognition,” IEEE Proceedings 2017 Brasilian Conference on Intelligent Systems, 306–311 (2017). [Google Scholar]
  17. A. S. Santos and M. E. Valle, “Max C and Min D projection autoassociative fuzzy morphological memories: theory and applications for face recognition,” arXiv:1902.04144v (Preprint submitted to Elsevier), 1–33 (2019). [Google Scholar]
  18. Y. Wang, “Model Selection,” Ch. 16 in Handbook of Computational Statistics: Concepts and Methods, 2nd Ed., J. E. Gentle, W. K. Härdle, Y. Mori (Springer Berlin, Heidelberg 2012), 469–497. [CrossRef] [Google Scholar]
  19. M. Wang and S. Chen, “Enhanced fuzzy morphological auto-associative memory based on empirical kernel map,” IEEE Transactions on Neural Networks, 16 (3), 557–564 (2005). [CrossRef] [Google Scholar]
  20. P. Sussner and M.E. Valle, “Gray-scale morphological associative memories,” IEEE Transactions on Neural Networks, 17 (3), 559–570 (2006). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.