Open Access
MATEC Web Conf.
Volume 292, 2019
23rd International Conference on Circuits, Systems, Communications and Computers (CSCC 2019)
Article Number 04006
Number of page(s) 5
Section Signal Processing
Published online 24 September 2019
  1. A. Pentland and T. Choudhury, “Face Recognition for Smart Environments,” IEEE Computer, 33 (2): 50-55, (2000). [CrossRef] [Google Scholar]
  2. P. Phillips et al., “The Feret Database and Evaluation Procedure for Face Recognition Algorithms,” Image and Vision Computing, May (1998), pp. 295-306. [CrossRef] [Google Scholar]
  3. L. Wiskott et al., “Face Recognition by Elastic Bunch Graph Matching,” Trans. IEEE Pattern Analysis and Machine Intelligence, 19 (7): 775-779, (1997). [CrossRef] [Google Scholar]
  4. B. Moghaddam and A. Pentland, “Probabilistic Visual Recognition for Object Recognition,” Trans. IEEE Pattern Analysis and Machine Intelligence, 19 (7): 696-710, (1997). [CrossRef] [Google Scholar]
  5. P. Penev and J. Atick, “Local Feature Analysis: A General Statistical Theory for Object Representation, Network: Computation in Neural Systems, Mar. (1996), pp. 477-500. [CrossRef] [Google Scholar]
  6. Yi, D., Lei, Z., Zhang, Z., Li, S.: Face anti-spoofing: Multi-spectral approach. In: Marcel, S., Nixon, M.S., Li, S.Z. (eds.) Handbook of Biometric Anti-Spoofing, Advances in Computer Vision and Pattern Recognition, pp. 83–102. Springer, London (2014) [CrossRef] [Google Scholar]
  7. D. W. Allen, An overview of spectral imaging of human skin toward face recognition, in: Face Recognition Across the Imaging Spectrum, Springer, (2016), pp. 1-19. [Google Scholar]
  8. M. Nischan, R. Joseph, J. Libby, J. Kerekes, Active spectral imaging, Lincoln Laboratory Journal 14 (2003) 131-144. [Google Scholar]
  9. B. Thirimachos, R. Arun, C. Cunjian, H. Lawrence, A study on using mid-wave infrared images for face recognition (2012). doi: 10.1117/12.918899. URL [Google Scholar]
  10. M. S. Sarfraz, R. Stiefelhagen, Deep perceptual mapping for thermal to visible face recognition, (2015). [Google Scholar]
  11. T. Ojala, M. Pietikinen, D. Harwood. A comparative study of texture measures with classification based on feature distributions, Pattern Recognition, 29 (1) (1996) 51-59, Elsevier. [CrossRef] [Google Scholar]
  12. B. Peixoto, C.Michelassi, A. Rocha, “Face liveness detection under bad illumination conditions”, in Proc. ICIP, (2011) [Google Scholar]
  13. Z. Zhang, J. Yan, S. Liu, Z. Lei, D. Yi, S. Li, A face antispoofing data set with diverse attacks, in Proc. ICB, (2012), pp. 26–31. [Google Scholar]
  14. I. Chingovska, N. Erdogmus, A. Anjos and S. Marcel, Face Recognition Systems Under Spoofing Attacks, Face Recognition Across the Imaging Spectrum (Springer, 2015), pp. 165-194. [Google Scholar]
  15. Y. Abbas, L. Man Po, M. Liu, Deep Learning for Face Anti-Spoofing: An End-to-End Approach, IEEE, (2017) [Google Scholar]
  16. L. Huang, C. Lu, “MULTISPECTRAL FACE SPOOFING DETECTION USING VIS-NIR IMAGING CORRELATION” International Journal of Wavelets, Multi resolution and Information Processing, (2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.