Open Access
Issue
MATEC Web Conf.
Volume 292, 2019
23rd International Conference on Circuits, Systems, Communications and Computers (CSCC 2019)
Article Number 03002
Number of page(s) 6
Section Computers
DOI https://doi.org/10.1051/matecconf/201929203002
Published online 24 September 2019
  1. CISCO, “Cisco visual networking index: forecast and trends,” 2017. [Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html. [Google Scholar]
  2. D. K. Arrowsmith, R. J. Mondrag, Modelling Network Data Traffic. (2005). [Google Scholar]
  3. I. W. C. Lee, A. O. Fapojuwo, Stochastic processes for computer network traffic modeling. Comput. Commun. 29, 1–23 (2005). [CrossRef] [Google Scholar]
  4. R. Pries, F. Warmer, D. Staehle, K. Heck, and P. Tran-Gia, Traffic measurement and analysis of a broadband wireless internet access. IEEE Veh. Technol. Conf. (2009). [Google Scholar]
  5. S. Maheshwari, K. Vasu, C. Kumar, and S. Mahapatra, Measurement and Comparative Analysis of UDP Traffic over Wireless Networks. Int. Conf. Wirel. Networks (2011). [Google Scholar]
  6. R. Sinha, C. Papadopoulos, and J. Heidemann, Internet Packet Size Distributions: Some Observations. Network 1–7 (2007). [Google Scholar]
  7. W. John and S. Tafvelin, Analysis of internet backbone traffic and header anomalies observed. dl.acm.org (2007). [Google Scholar]
  8. X. L. Wu, W. M. Li, F. Liu, and H. Yu, Packet size distribution of typical Internet applications. 2012 Int. Conf. Wavelet Act. Media Technol. Inf. Process. ICWAMTIP 2012 276–281 (2012). [Google Scholar]
  9. A. Hajjar, J. Khalife, and J. Díaz-Verdejo, Network traffic application identification based on message size analysis. J. Netw. Comput. Appl. 58, 130–143 (2015). [CrossRef] [Google Scholar]
  10. S. Lee, Y. Won, and D. J. Shin, On the multi-scale behavior of packet size distribution in internet backbone network. NOMS 2008 - IEEE/IFIP Netw. Oper. Manag. Symp. Pervasive Manag. Ubiquitous Networks Serv. 799–802 (2008). [Google Scholar]
  11. H. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, and K. Lee, Internet traffic classification demystified: myths, caveats, and the best practices. Proc. 2008 ACM Conex. Conf. 50, 1–12 (2008). [Google Scholar]
  12. M. Zhang, M. Dusi, W. John, and C. Chen, Analysis of UDP traffic usage on internet backbone links. Proc. - 2009 9th Annu. Int. Symp. Appl. Internet, SAINT 2009 280–281 (2009). [Google Scholar]
  13. O. J. Adeyemi, S. I. Popoola, A. A. Atayero, D. G. Afolayan, M. Ariyo, and E. Adetiba, Exploration of daily Internet data traffic generated in a smart university campus. Data Br. 20, 30–52 (2018). [CrossRef] [Google Scholar]
  14. J. Cao, W. S. Cleveland, D. Lin, and D. X. Sun, Internet Traffic Tends Toward Poisson and Independent as the Load Increases. Nonlinear Estim. Classif. 83–109 (2013). [Google Scholar]
  15. N. Vicari, Modeling of Internet Traffic : Internet Access Influence, User Interference, and TCP Behavior. Norbert Vicari Würzburger Beiträge zur Leistungsbewertung Verteilter Systeme. (2003). [Google Scholar]
  16. S. Maheshwari, S. Mahapatra, and K. Cheruvu, Measurement and Forecasting of Next Generation Wireless Internet Traffic. (2018). [Google Scholar]
  17. I. W. C. Lee and A. O. Fapojuwo, Analysis and modeling of a campus wireless network TCP/IP traffic. Comput. Networks 53, 2674–2687 (2009). [CrossRef] [Google Scholar]
  18. Mueller, C. M. On the importance of realistic traffic models for wireless network evaluations. COST 2100 12th MCM 6–13 (2010). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.