Issue |
MATEC Web Conf.
Volume 140, 2017
2017 International Conference on Emerging Electronic Solutions for IoT (ICEESI 2017)
|
|
---|---|---|
Article Number | 01033 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/matecconf/201714001033 | |
Published online | 11 December 2017 |
Performance Analysis of Congestion Control Mechanism in Software Defined Network (SDN)
1
School of Computer and Communication Engineering (SCCE), Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
2
Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin (UniSZA), Kuala Terengganu, Malaysia
* Corresponding author: naimahyaakob@unimap.edu.my
In the near future, the traditional networks architecture will be difficult to be managed. Hence, Software Defined Network (SDN) will be an alternative in the future of programmable networks to replace the conventional network architecture. The main idea of SDN architecture is to separate the forwarding plane and control plane of network system, where network operators can program packet forwarding behaviour to improve the network performance. Congestion control is important mechanism for network traffic to improve network capability and achieve high end Quality of Service (QoS). In this paper, extensive simulation is conducted to analyse the performance of SDN by implementing Link Layer Discovery Protocol (LLDP) under congested network. The simulation was conducted on Mininet by creating four different fanout and the result was analysed based on differences of matrix performance. As a result, the packet loss and throughput reduction were observed when number of fanout in the topology was increased. By using LLDP protocol, huge reduction in packet loss rate has been achieved while maximizing percentage packet delivery ratio.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.