Open Access
Issue
MATEC Web Conf.
Volume 277, 2019
2018 International Joint Conference on Metallurgical and Materials Engineering (JCMME 2018)
Article Number 02012
Number of page(s) 6
Section Data and Signal Processing
DOI https://doi.org/10.1051/matecconf/201927702012
Published online 02 April 2019
  1. Brown J C, Kastens J H, Coutinho A C., et al Classifying multiyear agricultural land use data from Mato Grosso using time-series MODIS vegetation index data. Remote Sensing of Environment, 2013, 130: 39-50. [CrossRef] [Google Scholar]
  2. Li X, Xu X, Wang J., et al Crop classification recognition based on time-series images from HJ satellite. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(2): 169-176. (in Chinese with English Abstract) [Google Scholar]
  3. Khatami, Reza, Giorgos Mountrakis, and Stephen V. Stehman. "A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research." Remote Sensing of Environment 177 (2016): 89-100. [CrossRef] [Google Scholar]
  4. Chen, Yushi, et al. "Deep learning-based classification of hyperspectral data." IEEE Journal of Selected topics in applied earth observations and remote sensing 7.6 (2014):2094-2107.5. [CrossRef] [Google Scholar]
  5. Kussul, Nataliia, et al. "Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data." IEEE Geoscience and Remote Sensing Letters 14.5 (2017): 778-782. [CrossRef] [Google Scholar]
  6. Fukushima K. Neocognitron: A hierarchical neural network capable of visual pattern recognition. Neural networks, 1988, 1(2): 119-130. [CrossRef] [Google Scholar]
  7. LeCun Y, Bottou L, Bengio Y., et al Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278-2324. [CrossRef] [Google Scholar]
  8. Simard P Y, Steinkraus D, Platt J C. Best practices for convolutional neural networks applied to visual document analysis. //ICDAR. 2003, 3: 958-962. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.