Open Access
Issue
MATEC Web Conf.
Volume 277, 2019
2018 International Joint Conference on Metallurgical and Materials Engineering (JCMME 2018)
Article Number 01007
Number of page(s) 7
Section Metallurgy & Control and Manufacturing
DOI https://doi.org/10.1051/matecconf/201927701007
Published online 02 April 2019
  1. Design and Real-Time Control of a 4-DOF Biped Robot, Jose Alejandro Vazquez and Martin Velasco-Villa, International Journal of Advanced Robotic Systems, Intech, 2013. [Google Scholar]
  2. Nonlinear Dynamics and Chaos in Fractional-Order Hopfield Neural Networks with Delay, Xia Huang, Zhen Wang, and Yuxia Li, Hindawi Publishing Corporation, Advances in Mathematical Physics, Volume 2013, Article ID 657245, 9 pages, http://dx.doi.org/10.1155/2013/657245 [Google Scholar]
  3. Stability analysis of fractional-order Hopfield neural networks with discontinuous activation functions, Shuo Zhang, Yongguang Yu, Qing Wang, Neurocomputing 171 (2016) 1075-1084, www.elsevier.com/locate/neucom. [Google Scholar]
  4. Integer & Fractional Order PID Controller for Fractional Order Subsystems of AUV, Mrs. Sneha D. Joshi, Dr. D. B. Talange, 2013 IEEE Symposium on Industrial Electronics & Applications (ISIEA2013), September 22-25, 2013, Kuching, Malaysia. [Google Scholar]
  5. R. Kelly, R. E. Haber, R.E. Haber Guerra and Fernando Reyes, "Lyapunov Stable Control of Robot Manipulators: a Fuzzy Self-TuningProcedure", Intelligent Automation and Soft Computing, Vol. 5, No. 4, pp. 313-326, 1999. [Google Scholar]
  6. Arturo Rojas. Moreno, Victor Jara. Sandoval, Fractional Order PD and PID Position Control of an Angular Manipulator of 3DOF, arojas@utec.edu.pe, jaravictor2000@yahoo.com. [Google Scholar]
  7. Fractional Versions of the Fundamental Theorem of Calculus, Eliana Contharteze Grigoletto, Edmundo Capelas de Oliveira, Applied Mathematics, 2013, 4, 23-33, Scientific Research, http://dx.doi.org/10.4236/am.2013.47A006, (http://www.scirp.org/journal/am). [Google Scholar]
  8. Fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks, Diyi Chen, Runfan Zhang, Xinzhi Liu, Xiaoyi Ma, Commun Nonlinear Sci Numer Simulat 19 (2014) 4105-4121, www.elsevier.com/locate/cnsns [Google Scholar]
  9. Disturbance Rejection for Fractional-Order Time-Delay Systems, Hai-Peng Jiang and Yong-Qiang Liu, Hindawi Publishing Corporation, Mathematical Problems in Engineering, Volume 2016, Article ID 1316046, 8 pages, http://dx.doi.org/10.1155/2016/1316046 [Google Scholar]
  10. Rovitahkis G. A. and M. A. Christodoulou, Adaptive Control with Recurrent High-Order Neural Networks, Springer Verlang, New York,USA, 2000. [Google Scholar]
  11. Petros A. Ioannou, Jing Sun, "Robust Adaptive Control", PTR Prentice-Hall, Upper Saddle River, NJ 07458. ISBN 0-13-439100-4. [Google Scholar]
  12. Adaptive Synchronization of Fractional Neural Networks with Unknown Parameters and Time Delays, Weiyuan Ma, Changpin Li, Yujiang Wu and Yongqing Wu, Entropy 2014, 16, 6286-6299; doi:http://dx.doi.org/10.3390/e16126286, ISSN 1099-4300. [Google Scholar]
  13. Mark W. Spong and M. Vidyasagar, Robot Dynamics and Control. John Wiler and Sons, USA, 1989. [Google Scholar]
  14. Ivo Petras, Nonlinear Physical Science, Fractional-Order Nonlinear Systems, Modeling, Analysis and Simulation, Springer,Springer Heidelberg Dordrecht London New York, ISSN 1867-8440, ISBN 978-3-642-18100-9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.