Open Access
Issue
MATEC Web Conf.
Volume 275, 2019
1st International Conference on Advances in Civil Engineering and Materials (ACEM1) and 1st World Symposium on Sustainable Bio-composite Materials and Structures (SBMS1) (ACEM2018 and SBMS1)
Article Number 03007
Number of page(s) 6
Section Geotechnical and Tunnel Engineering
DOI https://doi.org/10.1051/matecconf/201927503007
Published online 13 March 2019
  1. Vrakas, A. & Anagnostou, G. A finite strain closed-form solution for the elastoplastic ground response curve in tunnelling. Int. J. Numer. Anal. Methods Geomech. 38, 1131–1148 (2014). [CrossRef] [Google Scholar]
  2. Jaeger, C. Rock mechanics and engineering. (Cambridge University Press, 1979). [CrossRef] [Google Scholar]
  3. Brady, B. H. & Brown, E. T. Rock mechanics: for underground mining. (Springer science & business media, 2013). [Google Scholar]
  4. Huang, Z., Tang, C. & Cai, M. Numerical Analysis of Unloading-Induced Rock Failure: Insight into Strainburst Mechanism. Indian Geotech. J. 48, 558–563 (2018). [CrossRef] [Google Scholar]
  5. Lisjak, A., Garitte, B., Grasselli, G., Müller, H. R. & Vietor, T. The excavation of a circular tunnel in a bedded argillaceous rock (Opalinus Clay): Short-term rock mass response and FDEM numerical analysis. Tunn. Undergr. Space Technol. 45, 227–248 (2015). [CrossRef] [Google Scholar]
  6. Lin, P., Liu, H. & Zhou, W. Experimental study on failure behaviour of deep tunnels under high in-situ stresses. Tunn. Undergr. Space Technol. 46, 28–45 (2015). [CrossRef] [Google Scholar]
  7. Jiang Mingjing et al. Experimental Investigation of the Deformation Characteristics of Natural Loess under the Stress Paths in Shield Tunnel Excavation. Int. J. Geomech. 17, 04017079 (2017). [CrossRef] [Google Scholar]
  8. Jiang, Y., Yoneda, H. & Tanabashi, Y. Theoretical estimation of loosening pressure on tunnels in soft rocks. Tunn. Undergr. Space Technol. 16, 99–105 (2001). [CrossRef] [Google Scholar]
  9. Brown Edwin T., Bray John W., Ladanyi Branko & Hoek Evert. Ground Response Curves for Rock Tunnels. J. Geotech. Eng. 109, 15–39 (1983). [CrossRef] [Google Scholar]
  10. Ogawa, T. & Lo, K. Y. Effects of dilatancy and yield criteria on displacements around tunnels. Can. Geotech. J. 24, 100–113 (1987). [CrossRef] [Google Scholar]
  11. Cai, M. Influence of intermediate principal stress on rock fracturing and strength near excavation boundaries—Insight from numerical modeling. Int. J. Rock Mech. Min. Sci. 45, 763–772 (2008). [CrossRef] [Google Scholar]
  12. Pan, P.Z., Feng, X.T. & Hudson, J. A. The influence of the intermediate principal stress on rock failure behaviour: A numerical study. Eng. Geol. 124, 109–118 (2012). [CrossRef] [Google Scholar]
  13. Haimson, B. True Triaxial Stresses and the Brittle Fracture of Rock. Pure Appl. Geophys. 163, 1101–1130 (2006). [CrossRef] [Google Scholar]
  14. Fjær, E. & Ruistuen, H. Impact of the intermediate principal stress on the strength of heterogeneous rock. J. Geophys. Res. Solid Earth 107, ECV–3 (2002). [Google Scholar]
  15. Takahashi, M. & Koide, H. Effect of the intermediate principal stress on strength and deformation behavior of sedimentary rocks at the depth shallower than 2000 m. in ISRM international symposium (International Society for Rock Mechanics, 1989). [Google Scholar]
  16. Park, K.H., Tontavanich, B. & Lee, J.-G. A simple procedure for ground response curve of circular tunnel in elastic-strain softening rock masses. Tunn. Undergr. Space Technol. 23, 151–159 (2008). [CrossRef] [Google Scholar]
  17. Drucker, D. C. Some implications of work hardening and ideal plasticity. Q. Appl. Math. 7, 411–418 (1950). [CrossRef] [Google Scholar]
  18. Murrell, S. A. F. A criterion for brittle fracture of rocks and concrete under triaxial stress and the effect of pore pressure on the criterion. Rock Mech. 563–577 (1963). [Google Scholar]
  19. Deng, S., Zheng, Y. & Yue, C. Strength model and mesoscopic mechanism of intermediate principal stress effect on rock strength. Sci. Sin. Technol. 47, 306–315 (2017). [CrossRef] [Google Scholar]
  20. Zheng, Y. & Deng, S. Failure probability model considering the effect of intermediate principal stress on rock strength. Math. Probl. Eng. 2015, (2015). [Google Scholar]
  21. Cai, M. Rock mechanics and engineering (Second Edition). (Science Press, 2017). [Google Scholar]
  22. Beer, F. P., Jr, E. R. J., DeWolf, J. T. & Mazurek, D. F. Mechanics of Materials , 7th Edition. (McGraw-Hill Education, 2014). [Google Scholar]
  23. CHEN, L., PENG, J., FAN, W. & Sun, P. Analysis of surrounding rock mass plastic zone of round tunnel under non-uniform stress field based on the unified strength theory [J]. J. China Coal Soc. 1, 003 (2007). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.