Open Access
Issue
MATEC Web Conf.
Volume 273, 2019
International Cross-industry Safety Conference (ICSC) - European STAMP Workshop & Conference (ESWC) (ICSC-ESWC 2018)
Article Number 02002
Number of page(s) 15
Section European STAMP Workshop & Conference
DOI https://doi.org/10.1051/matecconf/201927302002
Published online 22 February 2019
  1. Abdulkhaleq, A., & Wagner, S. (2016). A Systematic and Semi-Automatic Safety-Based Test Case Generation Approach Based on Systems-Theoretic Process Analysis (Vol. V). Retrieved from http://arxiv.org/abs/1612.03103 [Google Scholar]
  2. Abrecht, B., & Leveson, N. G. (2016). Systems theoretic process analysis (STPA) of an offshore supply vessel dynamic positioning system. Boston, MA: Massachusetts Institute of Technology. Retrieved from http://hdl.handle.net/1721.1/104618 [Google Scholar]
  3. Aps, R., Fetissov, M., Goerlandt, F., Kujala, P., & Piel, A. (2017). Systems-Theoretic Process Analysis of Maritime Traffic Safety Management in the Gulf of Finland (Baltic Sea). Procedia Engineering, 179(Supplement C), 2-12. https://doi.org/https://doi.org/10.1016/j.proeng.2017.03.090 [CrossRef] [Google Scholar]
  4. DNV-GL. (2018). Class guideline DNVGL-CG-0264: Autonomous and remotely operated ships. [Google Scholar]
  5. Fleming, C. H., & Leveson, N. G. (2016). Early Concept Development and Safety Analysis of Future Transportation Systems. IEEE Transactions on Intelligent Transportation Systems, 17(12), 3512-3523. https://doi.org/10.1109/TITS.2016.2561409 [CrossRef] [Google Scholar]
  6. Fossdal, M. (2018). Online Consequence Analysis of Situational Awareness for Autonomous Vehicles. Norwegian University of Science adn Technology. [Google Scholar]
  7. Hogenboom, S., Rokseth, B., Vinnem, J. E., & Utne, I. B. (2017). Human Reliability and the Impact of Control Function Allocation in the Design of Dynamic Positioning Systems. Submitted to the Journal of Reliability Engineering and Safety Science. [Google Scholar]
  8. Johansen, T. A., Perez, T., & Cristofaro, A. (2016). Ship collision avoidance and COLREGS compliance using simulation-based control behavior selection with predictive hazard assessment. IEEE Transactions on Intelligent Transportation Systems, 17(12), 3407-3422. https://doi.org/10.1109/TITS.2016.2551780 [CrossRef] [Google Scholar]
  9. Laurinen, M. (2016). Remote and Autonomous Ships: The next steps. AAWA: Advanced Autonomous Waterborne Applications. Retrieved from http://www.rollsroyce.com/~/media/Files/R/Rolls-Royce/documents/customers/marine/ship-intel/aawawhitepaper-210616.pdf [Google Scholar]
  10. Levander, O. (2017). Autonomous ships on the high seas. IEEE Spectrum, 54(2), 26-31. https://doi.org/10.1109/MSPEC.2017.7833502 [CrossRef] [Google Scholar]
  11. Leveson, N. G. (2011). Engineering a safer world: Systems thinking applied to safety. Cambridge, MA: The MIT Press. [Google Scholar]
  12. Leveson, N. G., & Thomas, J. P. (2018). STPA Handbook. [Google Scholar]
  13. Porathe, T., Hoem, Å., & Johnsen, S. (2018). At least as safe as manned shipping? Autonomous shipping, safety and " human error .". In Safety and Reliability-Safe Societies in a Changing World (pp. 417-425). Trondheim. [CrossRef] [Google Scholar]
  14. Ramos, M. A., Utne, I. B., Vinnem, J. E., & Mosleh, A. (2018). Accounting for Human Failure in Autonomous Ship Operations.. In In Safety and Reliability-Safe Societies in a Changing World (pp. 355-363). Trondheim, Norway. [CrossRef] [Google Scholar]
  15. Rødseth, Ø. J., Kvamstad, B., Porathe, T., & Burmeister, H. C. (2013). Communication architecture for an unmanned merchant ship. OCEANS 2013 MTS/IEEE Bergen: The Challenges of the Northern Dimension, (314286). https://doi.org/10.1109/OCEANS-Bergen.2013.6608075 [Google Scholar]
  16. Rødseth, Ø. J., & Nordahl, H. (2017). Definitions for Autonomous Merchant Ships, 22. Retrieved from http://nfas.autonomous-ship.org/resources/autonom-defs.pdf [Google Scholar]
  17. Rødseth, Ø. J., Tjora, Å., & Baltzersen, P. (2014). D4.5: Architecture specification. [Google Scholar]
  18. Rokseth, B. (2018). Safety and Verification of Advanced Maritime Vessels: An Approach Based on Systems Theory. Norwegian University of Science and Technology. [Google Scholar]
  19. Rokseth, B., Utne, I. B., & Vinnem, J. E. (2017). A systems approach to risk analysis of maritime operations. Journal of Risk and Reliability, 231(1), 53-68. https://doi.org/10.1177/1748006X16682606 [Google Scholar]
  20. Rokseth, B., Utne, I. B., & Vinnem, J. E. (2018). Deriving verification objectives and scenarios for maritime systems using the systems-theoretic process analysis. Reliability Engineering and System Safety, 169(March 2017), 18-31. https://doi.org/10.1016/j.ress.2017.07.015 [Google Scholar]
  21. Thieme, C. A., Utne, I. B., & Haugen, S. (2018). Assessing ship risk model applicability to Marine Autonomous Surface Ships. Ocean Engineering, 165(June), 140-154. https://doi.org/10.1016/J.OCEANENG.2018.07.040 [CrossRef] [Google Scholar]
  22. Thomas, J., Sgueglia, J., Suo, D., Leveson, N., Vernacchia, M., & Sundaram, P. (2015). An Integrated Approach to Requirements Development and Hazard Analysis. SAE Technical Paper. https://doi.org/10.4271/2015-01-0274.Copyright [Google Scholar]
  23. Utne, I. B., Sørensen, A. J., & Schjølberg, I. (2017). Risk management of autonomous marine systems and operations.. In ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering (p. V03BT02A020-V03BT02A020). [CrossRef] [Google Scholar]
  24. Wroébel, K., Montewka, J., & Kujala, P. (2017). Towards the assessment of potential impact of unmanned vessels on maritime transportation safety. Reliability Engineering and System Safety, 165(August 2016), 155-169. https://doi.org/10.1016/j.ress.2017.03.029 [CrossRef] [Google Scholar]
  25. Wroébel, K., Montewka, J., & Kujala, P. (2018a). System-theoretic approach to safety of remotelycontrolled merchant vessel. Ocean Engineering, 152(January), 334-345. https://doi.org/10.1016/j.oceaneng.2018.01.020 [CrossRef] [Google Scholar]
  26. Wroébel, K., Montewka, J., & Kujala, P. (2018b). Towards the development of a system-theoretic model for safety assessment of autonomous merchant vessels. Reliability Engineering & System Safety, 178(June), 209-224. https://doi.org/10.1016/j.ress.2018.05.019 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.