Issue |
MATEC Web Conf.
Volume 273, 2019
International Cross-industry Safety Conference (ICSC) - European STAMP Workshop & Conference (ESWC) (ICSC-ESWC 2018)
|
|
---|---|---|
Article Number | 02002 | |
Number of page(s) | 15 | |
Section | European STAMP Workshop & Conference | |
DOI | https://doi.org/10.1051/matecconf/201927302002 | |
Published online | 22 February 2019 |
Safety Verification for Autonomous Ships
1
Department of Marine Technology, Norwegian University of Science and Technology, Norway
2
DNV GL, Group Technology & Research, Trondheim, Norway
* Corresponding author: +47 922 42 159, borge.rokseth@ntnu.no
Autonomous and unmanned ships are approaching reality. One of several unsolved challenges related to these systems is how to perform safety verification. Although this challenge represents a many-faceted problem, which must be addressed at several levels, it seems likely that simulatorbased testing of high-level computer control systems will be an important technique. In the field of reliability verification and testing, design verification refers to the process of verifying that specified functions are satisfied over the life of a system. A basic requirement for any autonomous ship is that it has to be safe. In this paper, we propose to use the Systems-Theoretic Process Analysis (STPA) to (i) derive potential loss scenarios for autonomous ships and safety requirements to prevent them from occurring, and (ii) to develop a safety verification program, including test cases, intended to verify safety. Loss scenarios and associated safety requirements are derived using STPA. To derive a safety verification program, these unsafe scenarios and safety requirements are used to identify key variables, verification objectives, acceptance criteria and a set of suitable verification activities related to each scenario. The paper describes the proposed methodology and demonstrates it in a case study. Test cases for simulator-based testing and practical sea-trials are derived for autonomous ships. The case study shows that the proposed method is feasible as a way of generating a holistic safety verification program for autonomous ships.
Key words: Autonomous Ships / Safety Verification / STPA / Maritime Safety / Test Case
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.