Open Access
Issue
MATEC Web Conf.
Volume 271, 2019
2019 Tran-SET Annual Conference
Article Number 06001
Number of page(s) 5
Section Intelligent Transportation Systems
DOI https://doi.org/10.1051/matecconf/201927106001
Published online 09 April 2019
  1. Outlook, W.E. (2009). International Energy Agency. Organisation for Economic Co-operation and Development, Paris. [Google Scholar]
  2. Duarte, F. andA. Ferreira (2016). Energy harvesting on road pavements: state of the art. Proc. Inst. Civil Eng. Energy 169(2): 1-12. [Google Scholar]
  3. Morbiato, T., Borri, C., and Vitaliani, R. (2014). Wind energy harvesting from transport systems: A resource estimation assessment. Applied Energy 133, 152-168. [CrossRef] [Google Scholar]
  4. Dawson, A., Mallick, R.,Hernandez, A.G. andDehdezi, P.K. (2014). Energy harvesting from pavements. Climate Change, Energy, Sustainability and Pavements, Springer, 481-517. [Google Scholar]
  5. Lee, K. and Correia, A. (2010). Investigation of novel methods to harvest solar energy from asphalt pavements, A Research Report to Korean Institute of Construction Technology, University of Rhode Island, Kingston, RI. [Google Scholar]
  6. Wardlaw, J.L., Karaman, I., and Karsilayan, A. (2013). Low-power circuits and energy harvesting for structural health monitoring of bridges. IEEE Sensors Journal 13(2): 709-722. [CrossRef] [Google Scholar]
  7. Datta, U. (2016). Harvesting of Thermoelectric energy from asphalt pavements. Master, University of Texas at San Antonio. [Google Scholar]
  8. Datta, U., Dessouky, S., and Papagiannakis, A. (2017). Harvesting Thermoelectric Energy from Asphalt Pavements. Transportation Research Record: Journal of the Transportation Research Board (2628): 12-22. [CrossRef] [Google Scholar]
  9. Roshani, H. and Dessouky, S. (2015). Feasibility Study to Harvest Electric Power from Highway Pavements using Laboratory Investigation. Department of Civil and Environmental Engineering University of Texas at San Antonio. [Google Scholar]
  10. Papagiannakis, A., Dessouky, S., Montoya, A., and Roshani, H. (2016). Energy harvesting from roadways. Procedia Computer Science 83, 758–765. [CrossRef] [Google Scholar]
  11. Roshani, H., Dessouky, S., Montoya, A., and Papagiannakis, A. (2016). Energy harvesting from asphalt pavement roadways vehicle-induced stresses: a feasibility study. Applied Energy 182, 210-218. [CrossRef] [Google Scholar]
  12. Papagiannakis, A., Montoya, A., Dessouky, S., and Helffrich, J. (2017). Development and Evaluation of Piezoelectric Prototypes for Roadway Energy Harvesting. Journal of Energy Engineering 143(5): 04017034. [CrossRef] [Google Scholar]
  13. Roshani, H., Jagtap, P., Dessouky, S., Montoya, A., and Papagiannakis, A. (2017). Theoretical and Experimental Evaluation of Two Roadway Piezoelectric-Based Energy Harvesting Prototypes. Journal of Materials in Civil Engineering. 30(2): 04017264. [CrossRef] [Google Scholar]
  14. Li, Z., Zuo, L., Kuang, J., and Luhrs, G. (2012). Energy-harvesting shock absorber with a mechanical motion rectifier. Smart Materials and Structures 22(2): 025008. [CrossRef] [Google Scholar]
  15. Polinder, H., Damen, M., and Gardner, F. (2005). Design, modelling and test results of the AWS PM linear generator. International Transactions on Electrical Energy Systems 15(3): 245-256. [Google Scholar]
  16. Leijon, M., Danielsson, O., Eriksson, M., Thorburn, K., Bernhoff, H., Isberg, J., Sundberg, J., Ivanova, I.,Sjöstedt, E., andÅgren, O. (2006). An electrical approach to wave energy conversion. Renewable energy 31(9): 1309-1319. [CrossRef] [Google Scholar]
  17. Xie, J. and Zuo, L. (2013). Dynamics and control of ocean wave energy converters. International Journal of Dynamics and Control. 1(3), 262–276. [CrossRef] [Google Scholar]
  18. Phillips, K.J. (2011). Simulation and control system of a railroad track power harvesting device. [Google Scholar]
  19. Pourghodrat, A. (2011). Energy harvesting systems design for railroad safety. [Google Scholar]
  20. Wang, J., Lin, T., and Zuo, L. (2013). High efficiency electromagnetic energy harvester for railroad application. ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers. [Google Scholar]
  21. Garcia-Pozuelo, D., Gauchia, A., Olmeda, E., and Diaz, V. (2014). Bump modeling and vehicle vertical dynamics prediction. Advances in Mechanical Engineering 6: 736576. [CrossRef] [Google Scholar]
  22. Partodezfoli, M., Rezaey, A., Baniasad, Z., and Rezaey, H. (2012). A novel speed-breaker for electrical energy generation suitable for elimination of remote parts of power systems where is near to roads. Journal of Basic and Applied Scientific Research 2(6), 6285-6292. [Google Scholar]
  23. Wang, L., Park, J., Zhou, W., and Zuo, L. (2016). A Large-Scale On-Road Energy Harvester from Highway Vibration. ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers. [Google Scholar]
  24. Eom, H.J. (2013). Faraday’s Law of Induction. Primary Theory of Electromagnetics, Springer: 95-111. [Google Scholar]
  25. Wang, L., Todaria, P., Pandey, A.,O'Connor, J.,Chernow, B., andZuo, L. (2016). An Electromagnetic Speed Bump Energy Harvester and Its Interactions With Vehicles. IEEE/ASME Transactions on Mechatronics 21(4), 1985-1994. [CrossRef] [Google Scholar]
  26. Todaria, P., Wang, L., Pandey, A.,O'Connor, J.,McAvoy, D.,Harrigan, T.,Chernow, B., andZuo, L. (2015). Design, modeling and test of a novel speed bump energy harvester. SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics. [Google Scholar]
  27. Aswathaman, V. and Priyadharshini, M. (2011). Every speed breaker is now a source of power. Proc. of 2010 International Conference on Biology, Environment and Chemistry IPCBEE. [Google Scholar]
  28. Obeid, H.H., Jaleel, A.K., and Hassan, N.A. (2014). Design and Motion Modeling of an Electromagnetic Hydraulic Power Hump Harvester. Advances in Mechanical Engineering 6: 150293. [CrossRef] [Google Scholar]
  29. Ullah, K.M.,Ahsan-uz-Zaman, K.,Hosen, S.,Khan, R.H., andParvin, S. (2016). Electrical power generation through speed breaker. Electrical and Computer Engineering (ICECE), 2016 9th International Conference on, IEEE. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.