Open Access
MATEC Web Conf.
Volume 271, 2019
2019 Tran-SET Annual Conference
Article Number 01008
Number of page(s) 3
Section Structural
Published online 09 April 2019
  1. Funakubo H. (1987). Shape Memory Alloys, Taylor and Francis. [Google Scholar]
  2. Otsuka K., Wayman C.M. (1999). Shape Memory Materials, Cambridge University Press. [Google Scholar]
  3. Billah A.M., and Alam M.S. (2012). Seismic performance of concrete columns reinforced with hybrid shape memory alloy (SMA) and fiber reinforced polymer (FRP) bars.” Construction and Building Materials, 28(1), 730–742. [CrossRef] [Google Scholar]
  4. Billah A.H.M., and Alam M.S. (2015). Seismic fragility assessment of concrete bridge pier reinforced with superelastic shape memory alloy. Earthquake Spectra, 31(3), 1515–1541. [Google Scholar]
  5. Saiidi M.S., Sadrossadat-Zadeh M., Ayoub C., Itani A. (2007). Pilot study of behavior of concrete beams reinforced with shape memory alloys. Journal of Materials in Civil Engineering, 19(6), 454–461. [CrossRef] [Google Scholar]
  6. Ozbulut O.E., and Huriebaus S. (2010). Evaluation of the performance of a sliding-type base isolation system with a NiTi shape memory alloy device considering temperature effects. Engineering Structures, 32, 238–249. [CrossRef] [Google Scholar]
  7. Torra V., Isalgue A., Martorell F., Terriault P., Lovey F.C. (2007). Built in dampers for family homes via SMA: An ANSYS computation scheme based on mesoscopic and microscopic experimental analyses. Engineering Structures, 29(8), 1889–1902. [CrossRef] [Google Scholar]
  8. Saiidi M., O’Brien M., and Sadrossadat-Zadeh M. (2010). Cyclic response of concrete bridge columns using superelastic nitinol and bendable concrete. ACI Structural Journal, 106, 69–77. [Google Scholar]
  9. Saiidi M.S., and Wang H. (2006). Exploratory study of seismic response of concrete columns with shape memory alloys reinforcement. ACI structural journal, 103(3). [Google Scholar]
  10. Torra V., Martorell F., Lovey F.C., and Sade M.L. (2017). Civil engineering applications: specific properties of NiTi thick wires and their damping capabilities, a review. Shape Memory and Superelasticity, 3, 403–413. [CrossRef] [Google Scholar]
  11. Ozcan H., Ma. J., Wang, S.J., Karaman, I. Chumlyakov Y., Brown J., and Noebe R.D. (2017). Effects of cyclic heat treatment and aging on superelasticity in oligocrystalline Fe-Mn-Al-Ni shape memory alloy wires. Scripta Materialia, 134, 66–70. [CrossRef] [Google Scholar]
  12. Omori, T., Okano, M., and Kainuma, R., (2013). Effect of grain size on superelasticity in Fe-Mn-Al-Ni shape memory alloy wire. APL Materials, 1(3), 032103. [CrossRef] [Google Scholar]
  13. Omori, T., Iwaizako, H., and Kainuma, R. (2016). Abnormal grain growth induced by cyclic heat treatment in Fe-Mn-Al-Ni superelastic alloy. Materials & Design. 101, 263–269. [CrossRef] [Google Scholar]
  14. Cullity B.D., and Hoboken N.J. (2009). Introduction to magnetic materials. Wiley/IEEE. [Google Scholar]
  15. Ozcan H., Ma. J., Karaman I., Chumlyakov, Y.I., Santamarta R., Brown J., and Noebe R.D. (2018). Microstructural design considerations in Fe-Mn-Al-Ni shape memory alloy wires: effects of natural aging. Scripta Materialia. 142, 153–157. [CrossRef] [Google Scholar]
  16. Ando K., Omori T., Ohnuma I., Kainuma R. and Ishida K. (2009). Ferromagnetic to weak-magnetic transition accompanied by bcc to fcc transformation in Fe-Mn-Al alloy. Applied Physics Letters. 95, 212504. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.