Open Access
MATEC Web Conf.
Volume 269, 2019
IIW 2018 - International Conference on Advanced Welding and Smart Fabrication Technologies
Article Number 02008
Number of page(s) 6
Section Advanced Welding Processes
Published online 22 February 2019
  1. Krauss, George.,1999, Martensite in steel: strength and structure, Materials Science and Engineering A273-275 (1999): 40-57. [CrossRef] [Google Scholar]
  2. S. Murugan, Sanjai, K. Rai, P.V. Kumar, T. Jayakumar, Baldev Raj, M.S.C. Bose, Temperature distribution and residual stress due to multi-pass welding in type 304 stainless steel and low carbon steel weld pad, International Journal of Pressure Vessels and Piping 78 (2001), 307-317. [CrossRef] [Google Scholar]
  3. Yurianto, Pola Tegangan Sisa Sambungan Las Rel R54 Hasil Pengelasan Thermite (Residual Stress Patern on Rail R54 Weld Joint Produced by Thermite Welding), Prosiding Seminar Nasional VII Rekayasa dan Aplikasi Teknik Mesin di Industri, TBMK-21, Bandung, 28-29 Okt.r 2008, ITENAS. [Google Scholar]
  4. J.C. Chang, B.S. Kim and N.H. Heo, Stress Relief Cracking on the Weld of T/P 23 Steel, Procedia Engineering 10 (2011) 734-739 [CrossRef] [Google Scholar]
  5. Wanchuck Woo, Vyacheslav Em, Pavel Mikula, Gyu-Baek An, Baek-Seok Seong, Materials Science and Engineering A 528 (2011) 4120-4124. [CrossRef] [Google Scholar]
  6. Zhihao Zhang, Wenping Wang, Huadong Fu, Jianxin Xie, Materials Science and Engineering A 530 (2011) 519-524. [CrossRef] [Google Scholar]
  7. Christopher J. Lammi and Diana A. Lados, International Journal of Fatigue 33 (2011) 858-867. [CrossRef] [Google Scholar]
  8. N.S. Rossini, M. Dassisti, K.Y. Benyounis, A.G. Olabi, Methods of measuring residual stresses in compo-nents, Materials and Design 35 (2012) 572-588. [CrossRef] [Google Scholar]
  9. J. Hensel, T. Nitschke-Pagela, D. Tchoffo Ngoula, H.-Th. Beier, D. Tchuindjang, Welding residual stresses as needed for the prediction of fatigue crack propagation and fatigue strength, Engineering Fracture Mechanics (2017). [Google Scholar]
  10. Si Young Kwak and Ho Young Hwang, Effect of heat tre-atment residual stress on stress behavior of constant stress beam, Journal of Computational Design and Engineering (2017), [Google Scholar]
  11. Gancho Genchev, Nikolay Doynov, Ralf Ossenbrink, Ves-selin Michailov, Gizo Bokuchava, Peter Petrov, Residual stresses formation in multi-pass weldment: A numerical and experimental study, Journal of Constructional Steel Research 138 (2017) 633-641. [CrossRef] [Google Scholar]
  12. Zeljko Bozic, Siegfried Schmauder, Hinko Wolf, The effect of residual stresses on fatigue crack propagation in welded stiffened panels, Engineering Failure Analysis (2017), doi: 10.1016/j.engfailanal.2017.09.001. [Google Scholar]
  13. Luis D. Cozzolino, Harry E. Coules, Paul A. Colegrove, Shuwen Wen, Investigation of post-weld rolling methods to reduce residual stress and distortion, Journal of Materials Processing Tech. 247 (2017) 243-256. [CrossRef] [Google Scholar]
  14. Cullity, B.D., (1978), Elements of X-Ray Diffraction, 2nd Edition, Addison-Wessley Publishing Company, Inc., Reading, Massachussetts, 447-453. [Google Scholar]
  15. Cepie Cahyana, (2018), Analysis of Residual Stress for Indonesia Q&T Steel Before and After GMAW Welding Using Neutron-Ray Difraction (Indonesian), Bachelor Theses, Mechanical Engineering Department, Faculty of Engineering, Diponegoro University, Indonesia. [Google Scholar]
  16. Dieter, George E., 1988, Mechanical Metallurgy, SI Metric Edition, McGraw-Hill Book Company (UK) Limited. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.