Open Access
Issue
MATEC Web Conf.
Volume 269, 2019
IIW 2018 - International Conference on Advanced Welding and Smart Fabrication Technologies
Article Number 01012
Number of page(s) 9
Section Welding Technologies
DOI https://doi.org/10.1051/matecconf/201926901012
Published online 22 February 2019
  1. Falkenreck, T., A. Kromm, and T. Böllinghaus, Investigation of physically simulated weld HAZ and CCT diagram of HSLA armour steel. Welding in the World, 2018. 62(1): p. 47-54. [CrossRef] [Google Scholar]
  2. Chin, E.S., Army focused research team on functionally graded armor composites. Materials Science and Engineering: A, 1999. 259(2): p. 155-161. [CrossRef] [Google Scholar]
  3. Schuldies, J. and R. Nageswaran, Ceramic matrix composites for ballistic protection of vehicles and personnel, in Blast Protection of Civil Infrastructures and Vehicles Using Composites. 2010, Elsevier. p. 235-243. [CrossRef] [Google Scholar]
  4. Czyryca, E. Advances in high strength steel technology for naval hull construction. in Key Engineering Materials. 1993. Trans Tech Publ. [Google Scholar]
  5. Pussegoda, L.N., B.A. Graville, and L. Malik, Delayed cracking in naval structures steels. 1997, Department of National Defence, Canada: Ottawa, ON. [Google Scholar]
  6. Ade, F., Ballistic qualification of armor steel weldments. Welding Journal, 1991. 70(9): p. 53-58. [Google Scholar]
  7. Magudeeswaran, G., et al., Effect of welding processes and consumables on tensile and impact properties of high strength quenched and tempered steel joints. Journal of iron and steel research, international, 2008. 15(6): p. 87-94. [CrossRef] [Google Scholar]
  8. Magudeeswaran, G., V. Balasubramanian, and G.M. Reddy, Hydrogen induced cold cracking studies on armour grade high strength, quenched and tempered steel weldments. International journal of hydrogen energy, 2008. 33(7): p. 1897-1908. [CrossRef] [Google Scholar]
  9. Magudeeswaran, G., V. Balasubramanian, and G.M. Reddy, Effect of welding processes and consumables on fatigue crack growth behaviour of armour grade quenched and tempered steel joints. Defence Technology, 2014. 10(1): p. 47-59. [CrossRef] [Google Scholar]
  10. Hochhauser, F., et al., Influence of the soft zone on the strength of welded modern HSLA steels. Welding in the World, 2012. 56(5-6): p. 77-85. [CrossRef] [Google Scholar]
  11. Hanhold, B., S. Babu, and G. Cola, Investigation of heat affected zone softening in armour steels Part 1–Phase transformation kinetics. Science and Technology of Welding and Joining, 2013. 18(3): p. 247-252. [CrossRef] [Google Scholar]
  12. Hanhold, B., S. Babu, and G. Cola, Investigation of heat affected zone softening in armour steels Part 2–Mechanical and microstructure heterogeneity. Science and Technology of Welding and Joining, 2013. 18(3): p. 253-260. [CrossRef] [Google Scholar]
  13. Yurioka, N., Predictive methods for prevention and control of hydrogen assisted cold cracking, in First International Conference on Weld Metal Hydrogen Cracking in Pipeline Grith Welds. 1999: Wollongong, Australia. [Google Scholar]
  14. Yurioka, N., Weldability of modem high strength steels, in 1st US-Japan Symposium on Advances in Welding Metallurgy. 1990: San Francisco, CA. p. 79-100. [Google Scholar]
  15. Yurioka, N., S. Ohshita, and H. Tamehiro, Study on Carbon Equivalents to Assess Cold Cracking Tendency and Hardness in Steel Welding, in Conference on Pipeline Welding in 80’s. 1981: Melbourne. [Google Scholar]
  16. Yurioka, N., et al., Welding Note 3rd Edition. 1985, Kanagawa Japan: Nippon Steel. [Google Scholar]
  17. Yurioka, N. and H. Suzuki, Hydrogen assisted cracking in C-Mn and low alloy steel weldments. International Materials Reviews, 1990. 35(4): p. 217-249. [CrossRef] [Google Scholar]
  18. Yurioka, N., S. Yamasaki, and H. Morimoto, Hydrogen effusion from high strength weld metal. Science and Technology of Welding and Joining, 2005. 10(4): p. 497-502. [CrossRef] [Google Scholar]
  19. Kurji, R. and N. Coniglio, Towards the establishment of weldability test standards for hydrogen-assisted cold cracking. The International Journal of Advanced Manufacturing Technology, 2015. 77(9-12): p. 1581-1597. [CrossRef] [Google Scholar]
  20. Kurji, R., et al., Modified WIC test: an efficient and effective tool for evaluating pipeline girth weldability. Science and Technology of Welding and Joining, 2016: p. 1-13. [Google Scholar]
  21. Bailey, N., et al., Welding without hydrogen cracking. 2nd Edition ed. 1995, Cambridge: TWI, Abington Publishing. [Google Scholar]
  22. Baker, R.G. and F. Watkinson, The effect of hydrogen on the welding of low-alloy steels, in Hydrogen in Steel. 1961, Iron and Steel Institute. p. 123-132. [Google Scholar]
  23. Beacham, E.P., H.H. Johnson, and R.D. Stout, Hydrogen and delayed cracking in steel weldments. Welding Research Supplement, 1961. 40(4): p. 155-159. [Google Scholar]
  24. Beachem, C., A new model for hydrogen-assisted cracking (hydrogen “embrittlement”). Metallurgical transactions, 1972. 3(2): p. 441-455. [CrossRef] [Google Scholar]
  25. Birnbaum, H., et al. Mechanisms of hydrogen related fracture--a review. in Second International Conference on Corrosion-Deformation Interactions. CDI’96. 1996. [Google Scholar]
  26. Birnbaum, H.K. and P. Sofronis, Hydrogenenhanced localized plasticity—a mechanism for hydrogen-related fracture. Materials Science and Engineering: A, 1994. 176(1-2): p. 191-202. [CrossRef] [Google Scholar]
  27. Coe, F.R., Welding Steels without Hydrogen Cracking. 1973, Abington: The Welding Institute Report. [Google Scholar]
  28. Coe, F.R., The Avoidance of Hydrogen Cracking in Welding. 1973, Abington: The Welding Institute Report. [Google Scholar]
  29. Gedeon, S.A. and T.W. Eagar, Assessing Hydrogen-Assisted Cracking Fracture Modes in High-Strength Steel Weldments. Welding Journal, 1990. 69(6): p. 213s-220s. [Google Scholar]
  30. Hirth, J.P., Theories of hydrogen induced cracking of steels, in Hydrogen embrittlement and stress corrosion cracking, R. Gibala and R.F. Hehemann, Editors. 1984: USA. p. 29-41. [Google Scholar]
  31. Homrossukon, S., S. Mostovoy, and J.A. Todd, Investigation of Hydrogen Assisted Cracking in High and Low Strength Steels. Journal of Pressure Vessel Technology, 2009. 131(4): p. 041405-041405. [CrossRef] [Google Scholar]
  32. Chen, L., Characterisation of transverse cold cracking in weld metal of a high strength quenched and tempered steel. 2000. [Google Scholar]
  33. Datta, R., et al., Weldability characteristics of shieled metal arc welded high strength quenched and tempered plates. Journal of Materials Engineering and Performance, 2002. 11(1): p. 5-10. [CrossRef] [Google Scholar]
  34. Powell, G., et al. Cold cracking and segregation in multipass welds of a quenched and tempered steel. in International Conference on Trends in Welding Research (6th: 2002: Phoenix, Ariz. USA.). 2002. [Google Scholar]
  35. Sterjovski, Z., Investigation of postweld heat treatment of quenched and tempered pressure vessel steels. 2003, University of Woolongong: Wollongong, NSW, Australia. [Google Scholar]
  36. Linnert, G.E., Welding Metallurgy. 4th ed. Vol. 1. 1994, Miami, Florida: AWS. [Google Scholar]
  37. Granjon, H., Fundamentals of welding metallurgy. 1991: Woodhead Pub Limited. [CrossRef] [Google Scholar]
  38. Chu, W.-H. and P.-C. Tung, Development of an automatic arc welding system using SMAW process. The International Journal of Advanced Manufacturing Technology, 2005. 27(3-4): p. 281-287. [CrossRef] [Google Scholar]
  39. Byrd, A., R. Anderson, and R. Stone, The Use of Virtual Welding Simulators to Evaluate Experienced Welders. Welding Journal, 2015. 94(12): p. 389. [Google Scholar]
  40. Funderburk, R.S., Key concepts in welding engineering. Welding Innovation, 1999. 16(1): p. 1-4. [Google Scholar]
  41. Parmar, R., Welding engineering and technology. 2010: Khanna publishers. [Google Scholar]
  42. Jeffus, L., Welding: principles and applications. 2011: Nelson Education. [Google Scholar]
  43. Norrish, J., Recent gas metal arc welding (GMAW) process developments: the implications related to international fabrication standards. Welding in the World, 2017. 61(4): p. 755-767. [CrossRef] [Google Scholar]
  44. Jaeschke, B., Overview of the process control variants available in GMAW, in 2016, Lorch: Auenwald, Germany. [Google Scholar]
  45. Norrish, J. Process control and automation developments in welding. in 8th Int. Conf. on Trends in Welding Research. ASM. 2009. sn. [Google Scholar]
  46. Ponomarev, V., et al., Metal transfer modes in mig/mag (gmaw) welding: Contributions to a New IIW Classification. IIW Doc, 2009. 12: p. 1960-09. [Google Scholar]
  47. Cramer, H., et al. Overview of modern arc processes and their metal transfer methods in the case of GMA welding. in The 6th International Conference-Innovative technologies for joining advanced materials. Timisoara, June 14-15. 2012. [Google Scholar]
  48. Cornish, N. et al, “GMAW-P vs SMAW; microstructure and weld metal integrity”, to be published, 2018 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.