Open Access
Issue
MATEC Web Conf.
Volume 268, 2019
The 25th Regional Symposium on Chemical Engineering (RSCE 2018)
Article Number 01010
Number of page(s) 6
Section Biochemical and Biomedical Engineering
DOI https://doi.org/10.1051/matecconf/201926801010
Published online 20 February 2019
  1. Xu, J., Dai, J., Xie, H. and Lv, C. Coal utilization eco-paradigm towards an integrated energy system, Energy Policy, 109, 2017, 370–381. [Google Scholar]
  2. Guan, G. Clean coal technologies in Japan: A review, Chinese Journal of Chemical Engineering, 25, 2017, 689–697. [CrossRef] [Google Scholar]
  3. Leonard, M. D., Michaelides, E.E. and Michaelides, D. N. Substitution of coal power plant with renewable energy source – Shift of the power demand and energy storage, Energy Conversion and Management, 164, 2018, 27–35. [CrossRef] [Google Scholar]
  4. Dmitrienko, M. A., Nyashina, G.S. and Strizhak, P.A. Major gas emission from combustion of slurry fuels based on coal, coal waste, and coal derivatives, Journal of Cleaner Production, 177, 2018, 284–301. [CrossRef] [Google Scholar]
  5. Available at www.doe.gov.ph/overall-statistics-on-coal. [Google Scholar]
  6. Available at www.doe.gov.ph/philippine-power-statistcs [Google Scholar]
  7. Chelgani, S.C. and Hower, J.C. Relationship between noble metals as potential coal combustion products and conventional coal properties, Fuel, 226, 2018, 345–349. [CrossRef] [Google Scholar]
  8. Behera, S. K., Meena, H., Chakraborty, S. and Meikap, B.C. Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal, International Journal of Mining Science and Technology, 2018, Article in press. [Google Scholar]
  9. Luo, Y., Ma, S., Zhao, Z., Wang, Z., Zheng, S. and Wang, X. Preparation and characterization of whisker-reinforced ceramics from coal, Ceramics International, 43, 2017, 1–11. [CrossRef] [Google Scholar]
  10. Yao, Z. T., Ji, X. S., Sarker, P. K., Tang, J. H., Ge, L. Q., Xia, M.S. and Xi, Y.Q. A comprehensive review on the application of coal fly ash, Earth-Science Review, 141, 2015, 105–121. [CrossRef] [Google Scholar]
  11. Singh, N., Mithulraj, M. and Arya, S. Influence of coal bottom ash as fine aggregates replacement on various properties of concrete: A review, Resources, Conservation and Recycling, 138, 2018, 257–271. [CrossRef] [Google Scholar]
  12. Kaksonen, A. H., Boxall, N.J. Gumulya, Y., Khaleque, H. N., Morris, C., Bohu, T., Cheng, K. Y., Usher, K.M. and Lakaniemi, A. Recent progress in biohydrometallurgy and microbial characterization, Hydrometallurgy, 180, 2018, 7–25. [CrossRef] [Google Scholar]
  13. Potysz, A., van Hullebusch, E.D. and Kierczak, J. Perspective regarding the use of metallurgical slags as secondary metal resources – A review of bioleaching approaches, Journal of Environmental Management, 219, 2018, 138–152. [CrossRef] [Google Scholar]
  14. Gu, T., Rastegar, S. O., Mousavi, S. M., Li, M. and Zhou, M. Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewerage sludge, Bioresource Technology, 261, 2018, 428–440. [CrossRef] [Google Scholar]
  15. Ye, M., Li, G., Yan, P., Ren, J., Zheng, L., Han, D., Sun, S., Huang, S. and Zhong, Y. Removal of metals from lead-zinc mine tailing using bioleaching and followed by sulfide precipitation, Chemosphere, 185, 2017, 1189–1196. [CrossRef] [Google Scholar]
  16. Potysz, A., Lens, P.N.L., van de Vossenberg, J., Rene, E. R., Grybos, M., Guibaud, G., Kierczak, J. and van Hullebusch, E.D. Comparison of Cu, Zn and Fe bioleaching from Cu-metallurgical slags in the presence of Pseudomonas fluorescence and Acidithiobacillus thiooxidans, Applied Geochemistry, 68, 2016, 29–52. [CrossRef] [Google Scholar]
  17. Chen, S., Yang, Y., Liu, C., Dong, F. and Liu, B. (2015). Column bioleaching copper and its kinetics of waste printed circuit boards (WPCB) by Acidithiobacillus ferrooxidans. Chemosphere, 141, 162–168. [CrossRef] [Google Scholar]
  18. Amiri, F., Mousavi, S. M., Yagjmaei, S. and Batari, M. Bioleaching kinetics of a spent refinery catalyst using Aspergillus niger at optimal conditions. Biochemical Engineering Journal, 67, 2012, 208–217. [CrossRef] [Google Scholar]
  19. Bakhtiari, F., Atashi, H., Zivdar, M., Seyedbagheri, S. and Fazaelipoor, M. H. Bioleaching kinetics of copper from copper smelter dust. Journal of Industrial and Engineering Chemistry, 17, 2011, 29–35. [CrossRef] [Google Scholar]
  20. Pangayao, D. C., Gallardo, S. M., Promentilla, M.A.B. and van Hullebusch, E.D. Bioleaching of trace metals from coal ash using local isolate from coal ash ponds, 156, 2018, 03031. [Google Scholar]
  21. Sen, S.K., Das, M. M., Bandyopadhyah, P. and Dash, R.R. Green process using hot spring bacterium to concentrate alumina in coal fly ash, Ecological Engineering, 88, 2016, 10–19. [CrossRef] [Google Scholar]
  22. Jujun, R., Xingjiong, Z., Yiming, Q., and Jian, H. A new strain for recovering precious metals from waste printed circuit boards, Waste Management, 34, 2014, 901–907. [CrossRef] [Google Scholar]
  23. Singh, R., Bishnoi, N. R., Kirrolia, A. and Kumar, R. Synergism of Pseudomonas aeruginosa and Fe0 for treatment of hevy metal contaminated effluent using small scale laboratory reactor, Bioresource Technology, 127, 2013, 49–58. [CrossRef] [Google Scholar]
  24. Jeremic, S., Beskoski, V. P., Djokic, L., Vasiljevic, B., Vrvic, M. M., Avdalovic, J., Cvijovic, G. G., Beskoski, L. S. and Nikodinovic-Runic, J. Interaction of tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments, Journal of Environmental Management, 172, 2016, 151-161. [CrossRef] [Google Scholar]
  25. Lin, J-G. and Chen, S-Y. Influence of solid content on bioleaching of heavy metals from contaminated sediments by Thiobacillus spp., Journal of Chemical Technology and Biotechnology, 75, 2000, 649–656. [CrossRef] [Google Scholar]
  26. Hu, G., Liu, G., Wu, D. and Fu, B. Geochemical behavior of hazardous volatile elements in coal with different geological origin during combustion, 233, 2018, 361–376. [Google Scholar]
  27. Stefaniak, S., Kmiecik, E., Miszczak, E., Szczepanska-Plewa, J. and Twarsowska, I. Leaching behavior of fly ash from co-firing of coal with alternative off gas fuel in powerplant boiler, 93, 2018, 129–144. [Google Scholar]
  28. Akar, G., Polat, M., Galecki, G. and Ipekoglu, U. Leaching behavior of selected trace metals in coal fly ash samples from Yenikoy coal-fired power plant, Fuel Processing Technology, 104, 2012, 50–56. [CrossRef] [Google Scholar]
  29. Skordas, G., Grmmelis, P., Prokopidou, M., Kakaras, E. and Sakellaropoulos, G. Chemical, leaching and toxicity characteristics of CFB combustion residue, Fuel, 88, 2009, 1201–1209. [CrossRef] [Google Scholar]
  30. Sen, S. K., Das, M. M., Bandyopadhyah, P. and Dash, R.R. Green process using hot spring bacterium to concentrate alumina in coal fly ash. Ecological Engineering, 88, 2016, 10–19. [CrossRef] [Google Scholar]
  31. Hassanien, W.A.G., Desouky, O.A.N. and Hussein, S.S.E. Bioleaching of some rare earth elements from Egyptian Monazite using Aspergillus fucuum and Pseudomonas aeruginosa, Walailak Journal of Science and Technology, 11, 2013, 809–823. [Google Scholar]
  32. Rasamiravaka, T., Labtani, Q., Duez, P. and El Jaziri, M. The formation of biofilms by Pseudomonas aeruginosa: A review of the natural and synthetic compounds interfering with control mechanism, BioMed Research International, 2015, 1 -17. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.