Open Access
MATEC Web Conf.
Volume 264, 2019
2nd International Conference on Composite Material, Polymer Science and Engineering (CMPSE2018)
Article Number 02004
Number of page(s) 5
Section Thermal Properties (Thermal Stability and Thermo-Plasticity)
Published online 30 January 2019
  1. M. Ahrens, “Trends and patterns of US fire loss,” National Fire Protection Association (NFPA) report Google Scholar, 2017 [Google Scholar]
  2. M. Ahrens, US vehicle fire trends and patterns: National Fire Protection Association, 2010 [Google Scholar]
  3. B. Reinicke, J. Axelsson, and R. Hammarström, “Bus and coach fires in Sweden and Norway, ” ed, 2006 [Google Scholar]
  4. Y. Li and M. Spearpoint, “Analysis of Vehicle Fire Statistics in New Zealand Parking Buildings,” Fire Technology, vol. 43, pp. 93–106, June 01 2007 [CrossRef] [Google Scholar]
  5. A. Hofmann and S. Dülsen, “Fire safety performance of buses,” Fires in Vehicles-FIVE 2012, p. 147, 2012 [Google Scholar]
  6. Periódico, “El pais” publicación 04 de juliode 2018, ” ed: Colombia. [Google Scholar]
  7. Periódico, “El Telégrafo”, publicación de 04 de septiembrede 2018, ” ed: Ecuador. [Google Scholar]
  8. Periódico, “El Heraldo” publicación de 25 de febrerode 2018., ” ed: Ecuador. [Google Scholar]
  9. A. Cordner, M. Mulcahy, and P. Brown, “Chemical regulation on fire: rapid policy advances on flame retardants,” Environmental science & technology, vol. 47, pp. 7067–7076, 2013 [CrossRef] [Google Scholar]
  10. L. H.-s. Z. Xin-lei and S. Li-xia, “Comprehensive Evaluation and Prediction of Fire Accidents in China Based on Statistics [J],” China Safety Science Journal, vol. 6, p. 010, 2011 [Google Scholar]
  11. C. Q. Yang, Q. He, R. E. Lyon, and Y. Hu, “Investigation of the flammability of different textile fabrics using micro-scale combustion calorimetry,” Polymer Degradation and Stability, vol. 95, pp. 108–115, 2010/02/01/ 2010 [CrossRef] [Google Scholar]
  12. D. Gao, R. Li, B. Lv, J. Ma, F. Tian, and J. Zhang, “Flammability, thermal and physical-mechanical properties of cationic polymer/montmorillonite composite on cotton fabric,” Composites Part B:Engineering, vol. 77, pp. 329–337, 2015/08/01/ 2015 [CrossRef] [Google Scholar]
  13. H. Yang, Q. Fu, X. Cheng, R. K. K. Yuen, and H. Zhang, “Investigation of the Flammability of Different Cables Using Pyrolysis Combustion Flow Calorimeter,” Procedia Engineering, vol. 62, pp. 778–785, 2013/01/01/ 2013 [CrossRef] [Google Scholar]
  14. A. Mouritz, S. Feih, E. Kandare, Z. Mathys, A. Gibson, P. Des Jardin, et al., “Review of fire structural modelling of polymer composites,” Composites Part A: Applied Science and Manufacturing, vol. 40, pp. 1800–1814, 2009 [CrossRef] [Google Scholar]
  15. M. Prabhakar, A. U. R. Shah, and J.-I. Song, “A review on the flammability and flame retardant properties of natural fibers and polymer matrix based composites,” Polymer, vol. 37, p. 40, 2015 [Google Scholar]
  16. ISO, “ISO 3795: 1989. Road vehicles, and tractors and machinery for agriculture and forestry – Determination of burning behaviour of interior materials, ” p. 6 [Google Scholar]
  17. FMVSS, “FMV 302 Flammability of interior materials, ” Federal Motor Vehicles Safety Standards. [Google Scholar]
  18. R. B. Darlington and A. F. Hayes, Regression analysis and linear models: Concepts, applications, and implementation: Guilford Publications, 2016 [Google Scholar]
  19. A. Subasinghe, R. Das, and D. Bhattacharyya, “Study of thermal, flammability and mechanical properties of intumescent flame retardant PP/kenaf nanocomposites,” International Journal of Smart and Nano Materials, vol. 7, pp. 202–220, 2016 [CrossRef] [Google Scholar]
  20. L. Rodríguez, V. Torres, R. O. Martínez, O. Jay, A. C. Noda, and M. Herrera, “Modelos para estimar la dinámica de crecimiento de Pennisetum purpureum vc. Cuba CT-169,” Revista cubana de ciencia agrícola, vol. 45, 2011 [Google Scholar]
  21. S. Chithra, S. S. Kumar, K. Chinnaraju, and F. A. Ashmita, “A comparative study on the compressive strength prediction models for High Performance Concrete containing nano silica and copper slag using regression analysis and Artificial Neural Networks,” Construction and Building Materials, vol. 114, pp. 528–535, 2016 [CrossRef] [Google Scholar]
  22. P. V. Parandekar, A. R. Browning, and O. Prakash, “Modeling the flammability characteristics of polymers using quantitative structure-property relationships (QSPR),” Polymer Engineering & Science, vol. 55, pp. 1553–1559, 2015 [CrossRef] [Google Scholar]
  23. F. Gharagheizi, “Prediction of upper flammability limit percent of pure compounds from their molecular structures,” Journal of Hazardous Materials, vol. 167, pp. 507–510, 2009/08/15/ 2009 [CrossRef] [Google Scholar]
  24. A. Bilal, R. J. T. Lin, and K. Jayaraman, “Optimisation of material compositions for flammability characteristics in rice husk/polyethylene composites,” Journal of Reinforced Plastics and Composites, vol. 33, pp. 2021–2033, 2014/11/01 2014 [CrossRef] [Google Scholar]
  25. H. Yaghoobi and A. Fereidoon, “Thermal analysis, statistical predicting, and optimization of the flexural properties of natural fiber biocomposites using Box-Behnken experimental design,” Journal of Natural Fibers, pp. 1–19, 2018 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.