Issue |
MATEC Web Conf.
Volume 156, 2018
The 24th Regional Symposium on Chemical Engineering (RSCE 2017)
|
|
---|---|---|
Article Number | 05010 | |
Number of page(s) | 7 | |
Section | Materials and Processing | |
DOI | https://doi.org/10.1051/matecconf/201815605010 | |
Published online | 14 March 2018 |
Synthesis and Characterization of Non-Halogenic Fire Retardant Composite with Epoxy Resin and Additive Combination Al(OH)3/Mg(OH)2
Chemical Engineering Department, Faculty of Engineering, University of Indonesia, Depok, 16424, Indonesia
* Corresponding author: asephandaya@gmail.com
Epoxy has many advantages over other resin. However, in certain usage, additive is needed to raise the thermal resistance of the composites, while lowering its negative effect on health and environment. One of the most common additives used for thermal resistance is halogen. Halogen gives negative effect on health and environment because of the release of toxic gas following its combustion. An alternative for halogen substitution is using Al(OH)3/Mg(OH)2. Therefore, in this research, the synthesis and characterization of non-halogenic fire retardant composite with epoxy resin and various concentration of additive Al(OH)3/Mg(OH)2 was conducted. The characterization of this research is the fire retardancy, morphology dispersion, and mechanical properties of the synthesized composite, such as tensile strength and hardness. The result of this research is that epoxy resin 50% with 50% of additive Al(OH)3 gives the best flame retardancy behavior and mechanical properties. This composite gives flammability rating V-0 with Tmax 364,3 °C, MLR 12,51 %/menit, total mass loss 57,26%, tensile strength 11,7 MPa, and hardness 79.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.