Open Access
Issue
MATEC Web Conf.
Volume 258, 2019
International Conference on Sustainable Civil Engineering Structures and Construction Materials (SCESCM 2018)
Article Number 01021
Number of page(s) 6
Section Green Construction Materials and Technologies, Environmental Impact and Green Design, Local and Recycled Materials
DOI https://doi.org/10.1051/matecconf/201925801021
Published online 25 January 2019
  1. B. Jayanthi, C. U. Emenike, P. Agamuthu, and S. H. Fauziah, “Potential of Cordyline sp Plat for Remediation of Metal-Leachate Contaminated Soil” International Journal of Chemical Engineering and Applications, 8 (2017). [Google Scholar]
  2. A. Garbisu, “Basic concepts on heavy metal soil bioremediation,” The European Journal of Mineral Processing and Environmental Protection, 3, 58–66, (2003). [Google Scholar]
  3. Dipu, S., Kumar, A. A And Thanga, V. S. G. Phytoremediation Of Dairy Effluent By Constructed Wetland Technology., Environmentalist; 31, 263–278, (2011). [CrossRef] [Google Scholar]
  4. Mahmood, Q., Zheng, P., Islam, E., Hayat, y., Hassan, M.J., Jilani, G. and Jin, R. C. Lab scale studies on water hyacinth (Eicchorniacrassipes mart solms) for biotreatment of textile waste water. Caspian J. Env.Sci., 3, 83–88, (2005). [Google Scholar]
  5. Ugya, A. Y. The efficiency of Lemna minor L. in the phytoremediation of Romi stream: A case study of Kaduna refinery and petrochemical company polluted stream. J. Applied Biol. Biotechnol., 3, 11–14, (2015). [CrossRef] [Google Scholar]
  6. Adamu Yunusa Ugya, Agamuthu Priatamby. Phytoremediation of Landfill Leachates Using Pistia Stratiotes: A Case Study of Kinkinau U/Ma’azu Kaduna, Nigeria. American Journal of Biological and Environmental Statistics. 2, 60–63, (2016). [Google Scholar]
  7. Wuana, R.A. & Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. [Google Scholar]
  8. International Scholarly Research Network Ecology, (2011). [Google Scholar]
  9. Lissy, A. M. P. N, and Madhu, B. Dr. G. Removal of heavy metals from waste water using water hyacinth., In: Proc. of the International Conference on Advances in Civil Engineering; 42–47, (2010). [Google Scholar]
  10. Khalil, N.A.N.A. Phytoremediation of Heavy Metals and The Physical Changes of Acacia Mangium Planted in Contaminated Soil from Indah Water Konsortium (IWK). (Unpublished degree dissertation). Universiti Putra Malaysia, Malaysia (2011). [Google Scholar]
  11. G. U. Chibuike and S. C. Obior, “Heavy metal polluted soils: Effect on plants and bioremediation methods,” Applied and Environmental Soil Science, 4, 1–12, (2014). [CrossRef] [Google Scholar]
  12. Padhi, S. Kumar, Sahu S. Kumar, Kumari Anuradha, Bharati Sudha, Ansari Shahbaj. Phytortemediation as an Alternative for Treatment of Paper Industry Effluent by Using Water Hyacinth (Eicchorniacrassipes)-A Polishing Treatment. INT Journal of Research in Chemistry and Environment; 2, 2248–9649, (2012). [Google Scholar]
  13. Gamage, N. S. and Yapa, P. A. J. Use of water hyacinth [Eichhorniacrassipes (Mart) solms] in treatment systems for textile mill effluents - A case study., J. Natn. Sci. Foundation Sri Lanka; 29, 15–28, (2001). [CrossRef] [Google Scholar]
  14. Abbas A A, Jingsong G, Ping L Z, Ya P Y, Al-Rekabi W S. Review on Landfill Leachate Treatments. American Journal of Applied Sciences 6, 672–684 (2009). [CrossRef] [Google Scholar]
  15. Niti T. Shah L et al: Preliminary Pharmacognostic and Phytochemical Evaluation of Kusha (Imperata Cylindrica Beauv). IJAAR Volume III Issue II May-June, 472–482 (2017). [Google Scholar]
  16. Nagendran R, Selvam A, Joseph K, Chiemchaisri C. Phytoremediation and rehabilitation of municipal solid waste landfills and dumpsites: A brief review. Waste Management 26, 1357–1369 (2006). [CrossRef] [Google Scholar]
  17. Annie, Melinda, Paz-AlbertoGilbert, C. Igua Bellrose G. Baui Jacqueline A. Prudente. Phytoextraction of lead-contaminated soil using vetivergrass (Vetiveria zizanioides L.), cogongrass (Imperata cylindrica L.) and carabaograss (Paspalum conjugatum L.) Environmental Science and Pollution Research - International, 14, 498–504 (2007) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.