Open Access
Issue
MATEC Web Conf.
Volume 256, 2019
The 5th International Conference on Mechatronics and Mechanical Engineering (ICMME 2018)
Article Number 03001
Number of page(s) 5
Section Modern Measurement and Control Technology & Key Technologies
DOI https://doi.org/10.1051/matecconf/201925603001
Published online 23 January 2019
  1. R. N. Sorge. Space power facility - capabilities for space environmental testing within a single facility. NASA/TM - 2013-217816. [Google Scholar]
  2. J. L. Homan. Creating the deep space environment for testing the James Webb Space Telescope at NASA Johnson Space Center’s Chamber A. NASA JSC-CN-28890. [Google Scholar]
  3. D. S. Adams. Mars exploration rover airbag landing loads testing and analysis. 45th AIAA structures, structural dynamics and materials conference. AIAA 2004-1795. [Google Scholar]
  4. G. M. Hill, R. K. Evans. Advanced distributed measurements and data processing at the vibro-acoustic test facility, GRC Space Power Facility, Sandusky, Ohio-an architecture and an example. 25th Aerospace testing conference, (2009). [Google Scholar]
  5. G. Andrina, L Cane, B. Panella. Solar simulation with infrared techniques applicability to Mercury/Bepicolombo probe system thermal test. Proceedings of 4th international symposium on environmental testing for space program, Noordwijk Netherlands, 327–332, (2001). [Google Scholar]
  6. S. G. Price, P. J. Argles. M. Manns. et al. Infra-red thermal balance testing of the Envisat payload module. Proceedings of 4th international symposium on environmental testiong for space program, Noordwijk Netherlands, 333–340, (2001). [Google Scholar]
  7. A. A. Edwards. Refurbishment of a 39 foot thermal vacuum chamber. NASA-95N14085: 271–297. [Google Scholar]
  8. P. Govindan, M. Satyanarayana, K Deviprasad. et al. Design and performance of 0.6 m thermal vacuum chamber. Proceedings of the 18th international cryogenic engineering conference, 679–682, (2000). [Google Scholar]
  9. R. N. Watson. A new thermal vacuum facility at Martin Marietta Waterton Plant. 17th Space simulation conference, 32–37, (1992). [Google Scholar]
  10. L. Zhang, M. Liu, Z. Wang, C. He. A review of technologies of temperature-adjustable heat sink[J]. Spacecraft environment engineering. 29 (2): 179–184, (2012). [Google Scholar]
  11. R. N. Watson, G. F. Proulx. A new thermal vacuum facility for Hughes space and communications at EI Swgundo California. 20th Space simulation conference the changing testing paradigm, 113–130, (1998). [Google Scholar]
  12. J. W. Fairbanks, M. B. Eck. A programmable dynamic thermal vacuum system for solar array component testing. NASA-TM-X-66945: 669–682. [Google Scholar]
  13. J. O. Hinze. Turbulence. (New York: McGraw - Hill Publishing Co., 1975). [Google Scholar]
  14. B. E. Launder, D. B. Spalding. Lectures in Mathematical Models of turbulence. (London: Academic Press, 1972). [Google Scholar]
  15. F. W. Dittus, L. M. K. Boelter. Heat transfer in automobile radiators of the tubular type. International communications in heat and mass transfer. 12: 3–22, (1985). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.