Open Access
MATEC Web Conf.
Volume 256, 2019
The 5th International Conference on Mechatronics and Mechanical Engineering (ICMME 2018)
Article Number 01005
Number of page(s) 4
Section Material Analysis and Applied Mechanics
Published online 23 January 2019
  1. P. Ohta, L. Valle, J. King, et al, Design of a Lightweight Soft Robotic Arm Using Pneumatic Artificial Muscles and Inflatable Sleeves. Soft Robotics, (2017) [Google Scholar]
  2. Y. Cui, T. Matsubara, K. Sugimoto, Pneumatic artificial muscle-driven robot control using local update reinforcement learning. Advanced Robotics, 31(8): 397–412, (2017) [CrossRef] [Google Scholar]
  3. T. E. Pillsbury, N. M. Wereley, Q. Guan, Comparison of contractile and extensile pneumatic artificial muscles. Smart Materials and Structures, 26(9): 095034, (2017). [CrossRef] [Google Scholar]
  4. B. K. S. Woods, O. Bilgen, M. I. Friswell, Wind tunnel testing of the fish bone active camber morphing concept. Journal of Intelligent Material Systems and Structures, 25(7): 772–785, (2014). [CrossRef] [Google Scholar]
  5. B. K. S. Woods, M. F. Gentry, C. S. Kothera, N. M. Wereley, Fatigue life testing of swaged pneumatic artificial muscles as actuators for aerospace applications. Journal of Intelligent Material Systems and Structures, 23(3): 327–343, (2012) [CrossRef] [Google Scholar]
  6. E. G. Hocking, N. M. Wereley, Analysis of nonlinear elastic behavior in miniature pneumatic artificial muscles. Smart Materials and Structures, 22(1): 014016, (2013). [CrossRef] [Google Scholar]
  7. Y. Chen, W. Yin, Y. Liu, J. Leng, Structural design and analysis of morphing skin embedded with pneumatic muscle fibers. Smart Materials and Structures, 20(8): 085033, (2011) [CrossRef] [Google Scholar]
  8. L. D. Peel, J. W. Baur, R. S. Justice, Characterization and application of shape-changing panels with embedded rubber muscle actuators. Smart Materials and Structures, 22(9): 094020, (2013). [CrossRef] [Google Scholar]
  9. N. Feng, L. Liu, Y. Liu, J. Leng. A bio-inspired, active morphing skin for camber morphing structures. Smart Materials and Structures, 24(03): 035023, (2015) [CrossRef] [Google Scholar]
  10. Y. Shan, M. Philen, A. Lotfi, Variable stiffness structures utilizing fluidic flexible matrix composites. Journal of Intelligent Material Systems and Structures, 20(4): 443–456, (2009) [CrossRef] [Google Scholar]
  11. A. Marouene, R. Boukhili, J. Chen, Buckling behavior of variable-stiffness composite laminates manufactured by the tow-drop method. Composite Structures, 139: 243–253, (2016) [CrossRef] [Google Scholar]
  12. A. Marouene, R. Boukhili, J. Chen, Effects of gaps and overlaps on the buckling behavior of an optimally designed variable-stiffness composite laminates - A numerical and experimental study. Composite Structures, 140: 556–566, (2016) [CrossRef] [Google Scholar]
  13. S. C. White, P. M. Weaver, K. C. Wu, Post-buckling analyses of variable-stiffness composite cylinders in axial compression. Composite Structures, 123: 190–203, (2015) [CrossRef] [Google Scholar]
  14. I. K. Kuder, A. F. Arrieta, P. Ermanni, Design space of embeddable variable stiffness bi-stable elements for morphing applications. Composite Structures, 122: 445–455, (2015) [CrossRef] [Google Scholar]
  15. P. Ribeiro, H. Akhavan, Non-linear vibrations of variable stiffness composite laminated plates. Composite Structures, 94(8): 2424–2432, (2012) [CrossRef] [Google Scholar]
  16. H. Akhavan, P. Ribeiro, Natural modes of vibration of variable stiffness composite laminates with curvilinear fibers. Composite Structures, 93(11): 3040–3047, (2011) [CrossRef] [Google Scholar]
  17. M. M. Abdalla, S. Setoodeh, Z. Gürdal, Design of variable stiffness composite panels for maximum fundamental frequency using lamination parameters. Composite structures, 81(2): 283–291, (2007) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.