Open Access
Issue
MATEC Web Conf.
Volume 255, 2019
Engineering Application of Artificial Intelligence Conference 2018 (EAAIC 2018)
Article Number 06007
Number of page(s) 10
Section Health Monitoring and Diagnosis
DOI https://doi.org/10.1051/matecconf/201925506007
Published online 16 January 2019
  1. H.B. Vuthaluru. Remediation of Ash Problems in Pulverised Coal-Fired Boilers. Fuel 78: 1789–1803 (1999) [CrossRef] [Google Scholar]
  2. E. Raask, Mineral Impurities in Coal Combustion - Behaviours Problems and Remedial Measures (New York, USA: Hemisphere Publishing, (1985) [Google Scholar]
  3. Z.H. Ma, F. Iman, P.S. Lu, R. Sears, L.B. Kong, A.S. Rokanuzzaman, D.P. McCollor, S.A. Benson, A Comprehensive Slagging and Fouling Prediction Tool for Coal-Fired Boilers and Its Validation/Application. Fuel Processing Technology 88:1035–1043, (2007) [CrossRef] [Google Scholar]
  4. R. Singh and L. Srivastava, Line Flow Contingency Selection and Ranking Using Cascade Neural Network. Neurocomputing 70: 2645–2650, (2007) [CrossRef] [Google Scholar]
  5. Satish Kumar. Ravali Cherukun. A Survey on Artificial Intelligence Techniques in Power Station. International Journal of Innovative Research in Science, Engineering and Technology (IJIRSET) 6(1) (2017) [Google Scholar]
  6. Samuel. A. Oluwadare. Gabriel B. Iwasokun. Olatubosun Olabode. O. Olusi. Akintobe E. Akinwonmi. Genetic Algortihm- based Cost Optimization Model for Power Economic Dispatch Problem. British Jorunal of Applied Science & Technology 15(6):1–10 (2016) [Google Scholar]
  7. Arun Kumar D R. Murali Mohan B M. Artificial Intelligence in Power Station. International Journal of Engineering and Technical Research (IJETR) 5(1) (2016) [Google Scholar]
  8. E. Teruel, C. Cortes, L.I. Diez, I. Aruazo. Monitoring and Prediction of Fouling in Coal-fired Utility Boilers Using Neural Networks. Chemical Engineering Science 60: 5035–5048, (2005) [CrossRef] [Google Scholar]
  9. J. Purbolaksono, J. Ahmad, L.C. Beng, A.Z. Rashid, A Khinani, A.A. Ali. Failure Analysis On A Primary Superheater Tube of A Power Plant. Engineering Failure Analysis 17: 158–167, (2010) [CrossRef] [Google Scholar]
  10. M.M. Rahman, J. Purbolaksono, J. Ahmad. Root Cause Failure of A Division Wall Superheater Tube of A Coal-fired Power Station. Engineering Failure Analysis 17: 1490–1494, (2010) [CrossRef] [Google Scholar]
  11. J. Ahmad, M.M. Rahman, M.H.A. Zulhairi, S. Ramesh, M.A. Hassan, J. Purbolaksono. High Operating Steam Pressure and Localized Overheating of A Primary Superheater Tube. Engineerig Failure Analysis 26:344–348, (2012) [CrossRef] [Google Scholar]
  12. B. Pena, E. Teruel, L.I. Diez. Soft-computing Models For Soot-blowing Optimization in Coal-fired Utility Boilers. Applied Soft Computing 11: 1657–1668, (2011) [CrossRef] [Google Scholar]
  13. H.B. Vuthaluru, N. Kotadiya, R. Vuthaluru, D. French. CFD Based Identification of Clinker Formation Regions in Large Scale Utility Boiler. Applied Thermal Engineering 31: 1368–1380, (2011) [CrossRef] [Google Scholar]
  14. J.M. Lee, D.W. Kim, J.S. Kim. Characteristics of Co- combustion of Anthracite with Bituminous Coal in A 200-MWe Circulating Fluidized Bed Boiler. Energy 36: 5703–5709, (2011) [CrossRef] [Google Scholar]
  15. S. Goyal and G.K. Goyal. Cascade and Feedforward Backpropagation Artificial Neural Network Models For Prediction of Sensory Quality of Instant Coffee Flavoured Sterilized Drink. Machine Learning and Pattern Recognition 2(6) [Google Scholar]
  16. A. Sriram. P.R. Venkateswaran. Sishaj P. Simon. Prediction of Induced Draft Fan Power Consumption in 500 MW Steam Generators using Artificial Neural Network. IEEE. (2017) [Google Scholar]
  17. T.E. Boukelia. O. Arslan. M.S. Mecibah. Potential Assessment of a Parabolic through Solar Thermal Power Plant Considering Hourly Analysis: ANN- based approach. Renewable Energy 105:324–333 (2016) [Google Scholar]
  18. S.A. El-Temtamy and T.S. Gendy. Economic Evaluation and Sensitivity Analysis of Some Fuel Oil Upgrading Processes. Egyptian Journal of Petroleum 23: 397–407 [Google Scholar]
  19. H.B. Vuthaluru and D.H. French. Mineralogical Investigations into Clinker Formation and Variation in Deposit Characteristics with Time in A large- scale PC-fired Boiler. Fuel 150:184–190, (2015) [CrossRef] [Google Scholar]
  20. A. Arjunwadkar, P. Basu, B. Acharya. A Review of Some Operation and Maintenance Issues of CFBC Boilers. Applied Thermal Engineering 102:672–694, (2016) [CrossRef] [Google Scholar]
  21. Victor Henrique Cabral Pinheiro. Roberto Schirru. Genetic Programming Applied To The Identifiication of Accidents of a PWR Nuclear Power Plant. Annals of Nuclear Energy 124:335–341 (2018) [Google Scholar]
  22. K.L Priddy and P.E Keller. Artificial Neural Network: An Introduction. Bellingham, Washington: SPIE Press (2005) [CrossRef] [Google Scholar]
  23. B. Yegnanarayana. Artificial Neural Networks. New Delhi: Pretice-Hall of India. (2006) [Google Scholar]
  24. D. Barh, M.S. Khan, E. Davies. PlantOmics: The Omics of Plant Science. New Delhi, India: Springer India (2015) [Google Scholar]
  25. E.E Khalil. “Performance and Testing of Steam Generators” in Power Plant Design, Montreux 2, CH: Gordon and Breach Science, pp. 125 (1990) [Google Scholar]
  26. A. Saltelli. (2004) Sensitivity Analysis in Practice: A guide to Assessing Scientific Models, Hoboken, Nj: John Wiley & Sons [Google Scholar]
  27. R.D. Neufville and S Scholtes. (2011) Flexibility in Engineering Design, Canbridge, MA: M.I.T Press [CrossRef] [Google Scholar]
  28. National Industrial Fuel Efficiency Service (Great Britain). (1989), Boiler Operators Handbook, London, UK: Graham & Trotman [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.