Issue |
MATEC Web Conf.
Volume 255, 2019
Engineering Application of Artificial Intelligence Conference 2018 (EAAIC 2018)
|
|
---|---|---|
Article Number | 06007 | |
Number of page(s) | 10 | |
Section | Health Monitoring and Diagnosis | |
DOI | https://doi.org/10.1051/matecconf/201925506007 | |
Published online | 16 January 2019 |
Intelligent Prediction of Clinker Formation Condition for Steam Boiler Tubes Using Artificial Neural Network
Institute of Power Generation, Faculty of Mechanical Engineering, Universiti Tenaga Nasional, Jalan IKRAM-Uniten, 43000 Kajang, Selangor Darul Ehsan, Malaysia
* Corresponding author: Firas@uniten.edu.my
Ash, as one of the by-product of combustion either accumulates onto boiler tubes as slag or is collected by electrostatic precipitators attached to the backend of the boiler. Flue gas will transport these ash particles either to the inner surfaces of the boiler or to the dust collecting facilities at the backend of the boiler. Sintered ash deposits formed in the radiant section of the boiler are known as clinkers and they contribute to a wide variety of problems to the boiler. Preventative measures to combat clinker formation is in dire need to the energy sector. In this study, a prediction model using real plan data was developed for detection of clinker formation conditions. Several variations of Artificial Neural Networks were tried and test, with emphasis given on the feed-forward neural network, cascade neural network and recurrent neural network. In addition, sensitivity analysis was also conducted to determine the influence of random input variables to their respective response variables. The Tornado Diagram is selected as the method to determine the most influential parameter for clinker formation. It is expected that the Recurrent Neural Network prediction model and the identified most influential input parameter for clinker formation will assist operators in decision making for the maintenance of boilers.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.