Open Access
Issue
MATEC Web Conf.
Volume 255, 2019
Engineering Application of Artificial Intelligence Conference 2018 (EAAIC 2018)
Article Number 06006
Number of page(s) 11
Section Health Monitoring and Diagnosis
DOI https://doi.org/10.1051/matecconf/201925506006
Published online 16 January 2019
  1. Z. Liu and Y. Kleiner, “State of the art review of inspection technologies for condition assessment of water pipes,” Meas. J. Int. Meas. Confed., vol. 46, no. 1, pp. 1–15, 2013. [CrossRef] [Google Scholar]
  2. Y. Javadi, H. S. Pirzaman, M. H. Raeisi, and M. A. Najafabadi, “Ultrasonic inspection of a welded stainless steel pipe to evaluate residual stresses through thickness,” Mater. Des., vol. 49, pp. 591–601, 2013. [CrossRef] [Google Scholar]
  3. M. Kubinyi, O. Kreibich, J. Neuzil, and R. Smid, “Novel S-transform information fusion for filtering ultrasonic pulse-echo signals,” no. 1, pp. 290–295, 2011. [Google Scholar]
  4. I. Bosch and L. Vergara, “Normalized split- spectrum: A detection approach,” Ultrasonics, vol. 48, no. 1, pp. 56–65, 2008. [CrossRef] [Google Scholar]
  5. M. R. Dann and C. Dann, “Automated matching of pipeline corrosion features from in-line inspection data,” Reliab. Eng. Syst. Saf., vol. 162, no. January, pp. 40–50, 2017. [CrossRef] [Google Scholar]
  6. L. Zhang et al., “Effect of the cathodic current density on the sub-surface concentration of hydrogen in X80 pipeline steels under cathodic protection,” Int. J. Hydrogen Energy, vol. 42, no. 5, pp. 3389–3398, 2016. [CrossRef] [Google Scholar]
  7. M. A. Mohtadi-Bonab, M. Eskandari, K. M. M. Rahman, R. Ouellet, and J. A. Szpunar, “An extensive study of hydrogen-induced cracking susceptibility in an API X60 sour service pipeline steel,” Int. J. Hydrogen Energy, vol. 41, no. 7, pp. 4185–4197, 2016. [CrossRef] [Google Scholar]
  8. Z. Y. Liu, X. Z. Wang, C. W. Du, J. K. Li, and X. G. Li, “Effect of hydrogen-induced plasticity on the stress corrosion cracking of X70 pipeline steel in simulated soil environments,” Mater. Sci. Eng. A, vol. 658, pp. 348–354, 2016. [CrossRef] [Google Scholar]
  9. C. Zhou et al., “Sulphide stress cracking behaviour of the dissimilar metal welded joint of X60 pipeline steel and Inconel 625 alloy,” Corros. Sci., vol. 110, pp. 242–252, 2016. [CrossRef] [Google Scholar]
  10. S. Ranade, M. Forsyth, and M. Y. J. Tan, “In situ measurement of pipeline coating integrity and corrosion resistance losses under simulated mechanical strains and cathodic protection,” Prog. Org. Coatings, vol. 101, pp. 111–121, 2016. [CrossRef] [Google Scholar]
  11. I. M. Dmytrakh, R. L. Leshchak, and A. M. Syrotyuk, “Effect of hydrogen concentration on fatigue crack growth behaviour in pipeline steel,” Int. J. Hydrogen Energy, vol. 0, no. 9, pp. 2–9, 2014. [Google Scholar]
  12. X. Shi, W. Yan, W. Wang, L. Zhao, Y. Shan, and K. Yang, “Effect of Microstructure on Hydrogen Induced Cracking Behavior of a High Deformability Pipeline Steel,” J. Iron Steel Res. Int., vol. 22, no. 10, pp. 937–942, 2015. [CrossRef] [Google Scholar]
  13. Z. Fan, X. Hu, J. Liu, H. Li, and J. Fu, “Stress corrosion cracking of L360NS pipeline steel in sulfur environment,” Petroleum, pp. 6–12, 2017. [Google Scholar]
  14. K. G. Solheim and J. K. Solberg, “Hydrogen induced stress cracking in supermartensitic stainless steels - Stress threshold for coarse grained HAZ,” Eng. Fail. Anal., vol. 32, no. 4035, pp. 348–359, 2013. [CrossRef] [Google Scholar]
  15. F. Sun, S. Ren, Z. Li, Z. Liu, X. Li, and C. Du, “Comparative study on the stress corrosion cracking of X70 pipeline steel in simulated shallow and deep sea environments,” Mater. Sci. Eng. A, vol. 685, no. October 2016, pp. 145–153, 2017. [CrossRef] [Google Scholar]
  16. Z. Ignaszak, P. Popielarski, J. Hajkowski, and J. B. Prunier, “Problem of Acceptability of Internal Porosity in Semi-Finished Cast Product as New Trend - ‘Tolerance of Damage’ Present in Modern Design Office,” Diffus. Solids Liq. Vii, vol. 326-328, pp. 612–619, 2012. [Google Scholar]
  17. R. E. Vieira, M. Parsi, P. Zahedi, B. S. McLaury, and S. A. Shirazi, “Ultrasonic measurements of sand particle erosion under upward multiphase annular flow conditions in a vertical-horizontal bend,” Int. J. Multiph. Flow, vol. 93, pp. 48–62, 2017. [CrossRef] [Google Scholar]
  18. C. B. Solnordal, C. Y. Wong, and J. Boulanger, “An experimental and numerical analysis of erosion caused by sand pneumatically conveyed through a standard pipe elbow,” Wear, vol. 336-337, pp. 43–57, 2015. [CrossRef] [Google Scholar]
  19. E. Mazzocchi, A. J. Pachoud, M. Farhat, F. E. Hachem, G. De Cesare, and A. J. Schleiss, “Signal analysis of an actively generated cavitation bubble in pressurized pipes for detection of wall stiffness drops,” J. Fluids Struct., vol. 65, pp. 60–75, 2016. [CrossRef] [Google Scholar]
  20. B. Wu, Y. Huang, and S. Krishnaswamy, “A Bayesian approach for sparse flaw detection from noisy signals for ultrasonic NDT,” NDT E Int., vol. 85, no. February 2016, pp. 76–85, 2017. [CrossRef] [Google Scholar]
  21. J. Chen, Y. Shi, and S. Shi, “Noise analysis of digital ultrasonic nondestructive evaluation system,” Int. J. Press. Vessel. Pip., vol. 76, no. 9, pp. 619–630, 1999. [CrossRef] [Google Scholar]
  22. J. Chen, Y. Shi, and S. Shi, “Noise analysis of digital ultrasonic system and elimination of pulse noise,” Int. J. Press. Vessel. Pip., vol. 75, pp. 887–890, 1998. [CrossRef] [Google Scholar]
  23. G. K. Sharma, A. Kumar, T. Jayakumar, B. Purnachandra Rao, and N. Mariyappa, “Ensemble Empirical Mode Decomposition based methodology for ultrasonic testing of coarse grain austenitic stainless steels,” Ultrasonics, vol. 57, pp. 167–178, 2015. [CrossRef] [Google Scholar]
  24. C. Liner, “An overview of wavelet transform concepts and applications,” Univ. Houst., pp. 1–17, 2010. [Google Scholar]
  25. Y. Wang, “Wavelet Transform Based Feature Extraction for Ultrasonic Flaw Signal Classification,” J. Comput., vol. 9, no. 3, pp. 725–732, 2014. [Google Scholar]
  26. W. K. Ngui, M. S. Leong, L. M. Hee, and A. M. Abdelrhman, “Wavelet Analysis: Mother Wavelet Selection Methods,” Appl. Mech. Mater., vol. 393, pp. 953–958, 2013. [CrossRef] [Google Scholar]
  27. M. Khelil, J.-H. Thomas, L. Simon, R. El Guerjouma, and M. Boudraa, “Characterization of Structural Noise Patterns and Echo Separation in the Time-Frequency Plane for Austenitic Stainless Steels,” J. Nondestruct. Eval., vol. 36, no. 2, p. 31, 2017. [CrossRef] [Google Scholar]
  28. H. Chen, M. J. Zuo, X. Wang, and M. R. Hoseini, “An adaptive Morlet wavelet filter for time-of- flight estimation in ultrasonic damage assessment,” Meas. J. Int. Meas. Confed., vol. 43, no. 4, pp. 570–585, 2010. [CrossRef] [Google Scholar]
  29. Y. Chen and M. Road, “Testing of Welding Flaws,” pp. 25–28, 2008. [Google Scholar]
  30. V. Matz, M. Kreidl, and R. Šmíd, “Signal-to-Noise Ratio Improvement based on the Discrete Wavelet Transform in Ultrasonic Defectoscopy,” Acta Polytech., vol. 44, no. 4, pp. 61–66, 2004. [Google Scholar]
  31. G. K. Sharma, S. Bhagi, S. Thirunavukkarasu, and B. P. Rao, “Wavelet transform-based approach for processing ultrasonic B-scan images,” Insight - Non-Destructive Test. Cond. Monit., vol. 59, no. 2, pp. 93–99, 2017. [CrossRef] [Google Scholar]
  32. A. Praveen, K. Vijayarekha, S. T. Abraham, and B. Venkatraman, “Signal quality enhancement using higher order wavelets for ultrasonic TOFD signals from austenitic stainless steel welds,” Ultrasonics, vol. 53, no. 7, pp. 1288–1292, 2013. [CrossRef] [Google Scholar]
  33. K. S. Abhishek kumar singh, Gurav pratap singh, “Weld Flaw Characterization Through Mathematical Modeling From Ultrasonic Signal,” 2015. [Google Scholar]
  34. F. Bettayeb, S. Haciane, and S. Aoudia, “Improving the time resolution and signal noise ratio of ultrasonic testing of welds by the wavelet packet,” NDT E Int., vol. 38, no. 6, pp. 478–484, 2005. [CrossRef] [Google Scholar]
  35. S. F. Qi, C. Zhao, and Y. Yang, “Research on ultrasonic detection of seabed oil pipeline based on wavelet packet de-noising,” Proc. - 5th Int. Conf. Wirel. Commun. Netw. Mob. Comput. WiCOM 2009, pp. 4–7, 2009. [Google Scholar]
  36. V. Matz, R. Smid, S. Starman, and M. Kreidl, “Signal-to-noise ratio enhancement based on wavelet filtering in ultrasonic testing,” Ultrasonics, vol. 49, no. 8, pp. 752–759, 2009. [CrossRef] [Google Scholar]
  37. S. Ventosa, C. Simon, M. Schimmel, J. J. Danobeitia, and A. Manuel, “The S-transform from a wavelet point of view,” IEEE Trans. Signal Process., vol. 56, no. 7 I, pp. 2771–2780, 2008. [CrossRef] [Google Scholar]
  38. P. Dash, B. K. Panigrahi, and G. Panda, “Power quality analysis using s-transform,” IEEE Trans. Power Deliv., vol. 18, no. 2, pp. 406–411, 2003. [CrossRef] [Google Scholar]
  39. R. G. Stockwell, L. Mansinha, and R. P. Lowe, “Localization of the complex spectrum: The S transform,” IEEE Trans. Signal Process., vol. 44, no. 4, pp. 998–1001, 1996. [CrossRef] [Google Scholar]
  40. M. A. Malik, “s-transform applied to ultrasonic nondestructive testing,” IEEE Int. Ultrason. Symp. Proc., no. 3, pp. 184–187, 2008. [Google Scholar]
  41. A. Benammar, R. Drai, and A. Guessoum, “Ultrasonic flaw detection using threshold modified S-transform,” Ultrasonics, vol. 54, no. 2, pp. 676–683, 2014. [CrossRef] [Google Scholar]
  42. H. Cai, C. Xu, S. Zhou, H. Yan, and L. Yang, “Study on the Thick-Walled Pipe Ultrasonic Signal Enhancement of Modified S-Transform and Singular Value Decomposition,” vol. 2015, 2015. [Google Scholar]
  43. B. Abdessalem, K. Ahmed, and D. Redouane, “Signal Quality Improvement Using a New TMSSE Algorithm: Application in Delamination Detection in Composite Materials,” J. Nondestruct. Eval., vol. 36, no. 1, p. 16, 2017. [CrossRef] [Google Scholar]
  44. M. Manjula and A. V. R. S. Sarma, “Comparison of empirical mode decomposition and wavelet based classification of power quality events,” Energy Procedia, vol. 14, pp. 1156–1162, 2012. [CrossRef] [Google Scholar]
  45. N. Huang et al., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 454, no. 1971, pp. 995, 903, 1998. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  46. Q. Zhang, P. W. Que, Q. K. Liu, T. L. Chen, and T. Han, “Application of empirical mode decomposition to ultrasonic signal,” Proc. - IEEE Ultrason. Symp., vol. 3, no. 1, pp. 1789–1792, 2005. [Google Scholar]
  47. R. Kažys, O. Tumšys, and D. Pagodinas, “Ultrasonic detection of defects in strongly attenuating structures using the Hilbert-Huang transform,” NDT E Int., vol. 41, no. 6, pp. 457–466, 2008. [CrossRef] [Google Scholar]
  48. Y. Lu and J. Saniie, “A Comparative Study of Singular Spectrum Analysis and Empirical Mode Decomposition for Ultrasonic NDE,” no. 1, pp. 1–4, 2016. [Google Scholar]
  49. T. Kong, C. Xu, and S. Zhou, “A time-frequency method for ultrasonic flaw inspection based on HHT,” Proc. - 2010 3 rd Int. Congr. Image Signal Process. CISP 2010, vol. 8, no. 1, pp. 3988–3991, 2010. [Google Scholar]
  50. Q. F. Li, Y. Wang, and L. Y. Xi, “Research on Ultrasonic Testing of Coarse-Grain Materials with Hilbert-Huang Transform,” Adv. Mater. Res., vol. 820, pp. 97–101, 2013. [CrossRef] [Google Scholar]
  51. S. Wu, “Solution for Mode Mixing Phenomenon of the Empirical Mode Decomposition,” 3 rd Int. Conforence Adv. Comput. Theory Eng., pp. 500–504, 2010. [Google Scholar]
  52. J. M. Yu and Z. Zhang, “Research on Feature Extraction for Ultrasonic Echo Signal Based on EEMD Approach,” Appl. Mech. Mater., vol. 321-324, pp. 1311–1316, 2013. [CrossRef] [Google Scholar]
  53. N. M. B. Qi Tian, Xing Li, “Multiple Target Detection Using Split Spectrum Processing and Group Delay Moving Entropy.” 1995. [Google Scholar]
  54. P. M. Shankar, V. L. Newhouse, P. Karpur, and J. L. Rose, “Split-Spectrum Processing: Analysis of Polarity Thresholding Algorithm for Improvement of Signal-to-Noise Ratio and Detectability in Ultrasonic Signals,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 36, no. 1, pp. 101–108, 1989. [CrossRef] [Google Scholar]
  55. P. Karpur, P. M. Shankar, J. L. Rose, and V. L. Newhouse, “Split spectrum processing: Determination of the available bandwidth for spectral splitting,” Ultrasonics, vol. 26, no. 4, pp. 204–209, Jul. 1988. [CrossRef] [Google Scholar]
  56. A. Benammar, R. Drai, and A. Guessoum, “Detection of delamination defects in CFRP materials using ultrasonic signal processing,” Ultrasonics, vol. 48, no. 8, pp. 731–738, 2008. [CrossRef] [Google Scholar]
  57. T. Meksen, B. Boudraa, and M. Boudraa, “A method to improve and automate flat defect detection during ultrasonic inspection,” Int. J. Adapt. Control Signal Process., vol. 22, pp. 375–383, 2012. [CrossRef] [Google Scholar]
  58. S. Haddad, M. Grimes, T. Benkedidah, and A. Bouhadjera, “Ultrasonic Signal Processing Based on the Combined Use of Empirical Mode Decomposition and Split Spectrum Processing Using the Prism Technique,” Nondestruct. Test. Mater. Struct., vol. 6, pp. 143–148, 2012. [Google Scholar]
  59. A. Rodríguez, R. Miralles, I. Bosch, and L. Vergara, “New analysis and extensions of split- spectrum processing algorithms,” NDT E Int., vol. 45, no. 1, pp. 141–147, 2012. [CrossRef] [Google Scholar]
  60. B. Abdessalem and D. Redouane, “Ultrasonic Flaw Detection in Composite Materials Using SSP-MPSD Algorithm,” vol. 9, no. 5, pp. 1753–1761, 2014. [Google Scholar]
  61. S. Song and P. Que, “Wavelet based noise suppression technique and its application to ultrasonic flaw detection.,” Ultrasonics, vol. 44, pp. 188–93, 2006. [CrossRef] [Google Scholar]
  62. T. Jingwen, G. Meijuan, Z. Hao, and L. Kai, “Corrosion detection system for oil pipelines based on multi-sensor data fusion by wavelet neural network,” 2007 IEEE Int. Conf. Control Autom. ICCA, vol. 0, pp. 2958–2963, 2008. [Google Scholar]
  63. S. Liu, C. Du, J. Mou, L. Martua, J. Zhang, and F. L. Lewis, “Diagnosis of structural cracks using wavelet transform and neural networks,” NDT E Int., vol. 54, pp. 9–18, 2013. [CrossRef] [Google Scholar]
  64. M. Zadkarami, M. Shahbazian, and K. Salahshoor, “Pipeline leakage detection and isolation: An integrated approach of statistical and wavelet feature extraction with multi-layer perceptron neural network (MLPNN),” J. Loss Prev. Process Ind., vol. 43, pp. 479–487, 2016. [CrossRef] [Google Scholar]
  65. M. Meng, Y. J. Chua, E. Wouterson, and C. P. K. Ong, “Ultrasonic signal classification and imaging system for composite materials via deep convolutional neural networks,” Neurocomputing, vol. 0, pp. 1–8, 2017. [Google Scholar]
  66. S. Sambath, P. Nagaraj, and N. Selvakumar, “Automatic defect classification in ultrasonic NDT using artificial intelligence,” J. Nondestruct. Eval., vol. 30, no. 1, pp. 20–28, 2011. [CrossRef] [Google Scholar]
  67. P. Yang and Q. Yang, “Empirical Mode Decomposition and Rough Set Attribute Reduction for Ultrasonic Flaw Signal Classification,” Int. J. Comput. Intell. Syst., pp. 1–12, 2014. [Google Scholar]
  68. K. Virupakshappa and E. Oruklu, “Ultrasonic flaw detection using Support Vector Machine classification,” 2015 IEEE Int. Ultrason. Symp., pp. 1–4, 2015. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.