Open Access
MATEC Web Conf.
Volume 255, 2019
Engineering Application of Artificial Intelligence Conference 2018 (EAAIC 2018)
Article Number 06005
Number of page(s) 7
Section Health Monitoring and Diagnosis
Published online 16 January 2019
  1. A. Bouzida, O. Touhami, R. Ibtiouen, A. Belouchrani, M. Fadel, and a. Rezzoug, “Fault diagnosis in industrial induction machines through discrete wavelet transform,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4385–4395, 2011. [CrossRef] [Google Scholar]
  2. W. Y. Liu, B. P. Tang, J. G. Han, X. N. Lu, N. N. Hu, and Z. Z. He, “The structure healthy condition monitoring and fault diagnosis methods in wind turbines: A review,” Renew. Sustain. Energy Rev., vol. 44, pp. 466–472, 2015. [CrossRef] [Google Scholar]
  3. X. Qi, D. Theilliol, J. Qi, Y. Zhang, and J. Han, “A literature review on Fault Diagnosis methods for manned and unmanned helicopters,” 2013 Int. Conf. Unmanned Aircr. Syst. ICUAS 2013 - Conf. Proc., pp. 1114–1118, 2013. [Google Scholar]
  4. M. Zhao, J. Lin, Y. Miao, and X. Xu, “Detection and recovery of fault impulses via improved harmonic product spectrum and its application in defect size estimation of train bearings,” Meas. J. Int. Meas. Confed., vol. 91, pp. 421–439, 2016 [CrossRef] [Google Scholar]
  5. C. Radu, “the Most Common Causes of Bearing Failure and the Importance of,” Rev. Lit. Arts Am., vol. 2010, no. February, p. 2010, 2010. [Google Scholar]
  6. M. Elforjani and D. Mba, “Accelerated natural fault diagnosis in slow speed bearings with Acoustic Emission,” Eng. Fract. Mech., vol. 77, no. 1, pp. 112–127, 2010. [CrossRef] [Google Scholar]
  7. L. Shuang, “Bearing Fault Diagnosis Based on PCA and SVM,” 2007 Int. Conf. Mechatronics Autom., no. 1, pp. 3503–3507, 2007. [CrossRef] [Google Scholar]
  8. “Statistics Show Bearing Problems Cause the Majority of Wind Turbine Gearbox Failures,” 2015. [Online]. Available: [Google Scholar]
  9. N. Tandon and A. Choudhury, “Review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings,” Tribol. Int., vol. 32, no. 8, pp. 469–480, 1999. [CrossRef] [Google Scholar]
  10. S. Nandi, H. A. Toliyat, S. Member, X. Li, and S. Member, “Condition Monitoring and Fault Diagnosis of Electrical Motors - A Review,” vol. 20, no. 4, pp. 719–729, 2005. [Google Scholar]
  11. A. K. S. Jardine, D. Lin, and D. Banjevic, “A review on machinery diagnostics and prognostics implementing condition-based maintenance,” Mech. Syst. Signal Process., vol. 20, no. 7, pp. 1483–1510, 2006. [CrossRef] [Google Scholar]
  12. W. Zhou, T. G. Habetler, and R. G. Harley, “Bearing Condition Monitoring Methods for Electric Machines: A General Review,” 2007 IEEE Int. Symp. Diagnostics Electr. Mach. Power Electron. Drives, pp. 3–6, 2007. [CrossRef] [Google Scholar]
  13. R. Sidar, P. K. Sen, and G. Sahu, “Review of Vibration Based Fault Diagnosis in Rolling Element Bearing and Vibration Analysis Techniques,” vol. 4, no. 10, pp. 998–1003, 2015. [Google Scholar]
  14. Y. H. Ali and S. M. Ali, “Acoustic Emission and Artificial Intelligent Methods in Condition Monitoring of Rotating Machine - A Review,” pp. 212–219, 2016. [Google Scholar]
  15. H. D. M. De Azevedo, A. M. Araújo, and N. Bouchonneau, “A review of wind turbine bearing condition monitoring: State of the art and challenges,” Renew. Sustain. Energy Rev., vol. 56, pp. 368–379, 2016. [CrossRef] [Google Scholar]
  16. A. Cubillo, S. Perinpanayagam, and M. Esperon-Miguez, “A review of physics-based models in prognostics: Application to gears and bearings of rotating machinery,” Adv. Mech. Eng., vol. 8, no. 8, pp. 1–21, 2016. [CrossRef] [Google Scholar]
  17. S. B. Imandoust and M. Bolandraftar, “Application of K-Nearest Neighbor (KNN) Approach for Predicting Economic Events :Theoretical Background,” Int. J. Eng. Res. Appl., vol. 3, no. 5, pp. 605–610, 2013. [Google Scholar]
  18. H. S. Khamis, K. W. Cheruiyot, and S. Kimani, “Application of k- Nearest Neighbour Classification in Medical Data Mining,” vol. 4, no. 4, pp. 121–128, 2014. [Google Scholar]
  19. J. Tian, C. Morillo, M. H. Azarian, and M. Pecht, “Kurtosis-Based Feature Extraction Coupled With K -Nearest Neighbor Distance Analysis,” vol. 63, no. 3, pp. 1793–1803, 2016. [Google Scholar]
  20. H. Yigit, “ABC-based distance-weighted k NN algorithm,” J. Exp. Theor. Artif. Intell., vol. 3079, no. June, pp. 1–10, 2014. [Google Scholar]
  21. D. H. Pandya, S. H. Upadhyay, and S. P. Harsha, “Fault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNN,” Expert Syst. Appl., vol. 40, no. 10, pp. 4137–4145, 2013. [CrossRef] [Google Scholar]
  22. M. S. Safizadeh and S. K. Latifi, “Using multi-sensor data fusion for vibration fault diagnosis of rolling element bearings by accelerometer and load cell,” Inf. Fusion, vol. 18, no. 1, pp. 1–8, 2014 [CrossRef] [Google Scholar]
  23. P. Baraldi, F. Cannarile, F. Di Maio, and E. Zio, “Hierarchical k-nearest neighbours classification and binary differential evolution for fault diagnostics of automotive bearings operating under variable conditions,” Eng. Appl. Artif. Intell., vol. 56, pp. 1–13, 2016. [Google Scholar]
  24. H. Sadegh, A. N. Mehdi, and A. Mehdi, “Classification of acoustic emission signals generated from journal bearing at different lubrication conditions based on wavelet analysis in combination with artificial neural network and genetic algorithm,” Tribol. Int., vol. 95, pp. 426–434, 2016. [CrossRef] [Google Scholar]
  25. Y. H. Ali, R. Abd Rahman, and R. I. R. Hamzah, “Artificial neural network model for monitoring oil film regime in spur gear based on acoustic emission data,” Shock Vib., vol. 2015, 2015. [Google Scholar]
  26. Y. Yu, Yu Dejie, and C. Junsheng, “A roller bearing fault diagnosis method based on EMD energy entropy and ANN,” J. Sound Vib., vol. 294, no. 1-2, pp. 269–277, 2006. [CrossRef] [Google Scholar]
  27. J. Ben Ali, N. Fnaiech, L. Saidi, B. Chebel-Morello, and F. Fnaiech, “Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals,” Appl. Acoust., vol. 89, pp. 16–27, 2015. [Google Scholar]
  28. J. Ben Ali, L. Saidi, A. Mouelhi, B. Chebel-Morello, and F. Fnaiech, “Linear feature selection and classification using PNN and SFAM neural networks for a nearly online diagnosis of bearing naturally progressing degradations,” Eng. Appl. Artif. Intell., vol. 42, pp. 67–81, 2015. [CrossRef] [Google Scholar]
  29. C. Vana, Vital Rao; Ratnamb, “Estimation of Defect Severity in Rolling Element Bearings using Vibration Signals with Artificial Neural Network,” Jordan J. Mech. Ind. Eng., vol. 9, no. 2, pp. 113–120, 2015. [Google Scholar]
  30. C. Cortes and V. Vapnik, “Support-Vector Networks,” vol. 297, pp. 273–297, 1995. [Google Scholar]
  31. M. Rafi and M. S. Shaikh, “A comparison of SVM and RVM for Document Classification,” Procedia Comput. Sci., vol. 00, pp. 3–8, 2013. [Google Scholar]
  32. L. L. Jiang, H. K. Yin, X. J. Li, and S. W. Tang, “Fault diagnosis of rotating machinery based on multisensor information fusion using SVM and time-domain features,” Shock Vib., vol. 2014, 2014 [Google Scholar]
  33. K. H. Hui, M. H. Lim, M. S. Leong, and S. M. Al-Obaidi, “Dempster-Shafer evidence theory for multi-bearing faults diagnosis,” Eng. Appl. Artif. Intell., vol. 57, no. October 2016, pp. 160–170, 2017. [CrossRef] [Google Scholar]
  34. M. Zeng, Y. Yang, S. Luo, and J. Cheng, “One-class classification based on the convex hull for bearing fault detection,” Mech. Syst. Signal …, vol. 81, pp. 274–293, 2016. [CrossRef] [Google Scholar]
  35. M. Tipping, “Sparse Bayesian Learning and the Relevance Vector Machine,” J. Mach. Learn. Res., vol. 1, pp. 211–244, 2001. [Google Scholar]
  36. N. Ceryan, “Application of support vector machines and relevance vector machines in predicting uniaxial compressive strength of volcanic rocks,” J. African Earth Sci., vol. 100, pp. 634–644, 2014. [CrossRef] [Google Scholar]
  37. M. Pal, “Kernel Methods in Remote Sensing: a Review,” ISH J. Hydraul. Eng., vol. 15, no. sup1, pp. 194–215, 2009. [CrossRef] [Google Scholar]
  38. F. Di Maio, K. L. Tsui, and E. Zio, “Combining Relevance Vector Machines and exponential regression for bearing residual life estimation,” Mech. Syst. Signal Process., vol. 31, pp. 405–427, 2012. [CrossRef] [Google Scholar]
  39. V. T. Tran, B. S. Yang, F. Gu, and A. Ball, “Thermal image enhancement using bi-dimensional empirical mode decomposition in combination with relevance vector machine for rotating machinery fault diagnosis,” Mech. Syst. Signal Process., vol. 38, no. 2, pp. 601–614, 2013 [CrossRef] [Google Scholar]
  40. S. Fei, “Kurtosis forecasting of bearing vibration signal based on the hybrid model of empirical mode decomposition and RVM with artificial bee colony algorithm,” Expert Syst. Appl., vol. 42, no. 11, pp. 5011–5018, 2015. [CrossRef] [Google Scholar]
  41. A. Lendasse, V. C. Man, Y. Miche, and G. Bin Huang, “Advances in extreme learning machines (ELM2014),” Neurocomputing, vol. 174, pp. 1–3, 2016. [CrossRef] [Google Scholar]
  42. G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning machine for regression and multiclass classification,” IEEE Trans. Syst. man, Cybern. Part B, Cybern., vol. 42, no. 2, pp. 513–29, 2012. [CrossRef] [Google Scholar]
  43. Y. Tian, J. Ma, C. Lu, and Z. Wang, “Rolling bearing fault diagnosis under variable conditions using LMD-SVD and extreme learning machine,” Mech. Mach. Theory, vol. 90, pp. 175–186, 2015. [CrossRef] [Google Scholar]
  44. Y. Liu, B. He, F. Liu, S. Lu, Y. Zhao, and J. Zhao, “Remaining useful life prediction of rolling bearings using PSR, JADE, and extreme learning machine,” Math. Probl. Eng., vol. 2016, 2016 [Google Scholar]
  45. M. Luo, C. Li, X. Zhang, R. Li, and X. An, “Compound feature selection and parameter optimization of ELM for fault diagnosis of rolling element bearings,” ISA Trans., vol. 65, pp. 556–566, 2016. [CrossRef] [Google Scholar]
  46. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, May 2015. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  47. M. Bianchini and F. Scarselli, “On the complexity of neural network classifiers: A comparison between shallow and deep architectures,” IEEE Trans. Neural Networks Learn. Syst., vol. 25, no. 8, pp. 1553–1565, 2014 [CrossRef] [Google Scholar]
  48. D. Yu and L. Deng, “Deep Learning and Its Applications to Signal and Information Processing [Exploratory DSP],” Signal Process. Mag. IEEE, vol. 28, no. 1, pp. 145–154, 2011. [CrossRef] [Google Scholar]
  49. L. Deng, G. Hinton, and B. Kingsbury, “New types of deep neural network learning for speech recognition and related applications: an overview,” 2013 IEEE Int. Conf. Acoust. Speech Signal Process., pp. 8599–8603, 2013. [CrossRef] [Google Scholar]
  50. X. He, D. Wang, Y. Li, and C. Zhou, “A Novel Bearing Fault Diagnosis Method Based on Gaussian Restricted Boltzmann Machine,” vol. 2016, 2016. [Google Scholar]
  51. L. Jing, T. Wang, M. Zhao, and P. Wang, “An Adaptive Multi-Sensor Data Fusion Method Based on Deep Convolutional Neural Networks for Fault Diagnosis of Planetary Gearbox,” Sensors, vol. 17, no. 3, p. 414, 2017. [CrossRef] [Google Scholar]
  52. H. Shao, H. Jiang, F. Wang, and H. Zhao, “An enhancement deep feature fusion method for rotating machinery fault diagnosis,” Knowledge-Based Syst., vol. 119, pp. 200–220, 2016. [CrossRef] [Google Scholar]
  53. C. Lu, Z. Y. Wang, W. L. Qin, and J. Ma, “Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification,” Signal Processing, vol. 130, pp. 377–388, 2017. [CrossRef] [Google Scholar]
  54. J. Yin and W. Zhao, “Fault diagnosis network design for vehicle on-board equipments of high-speed railway: A deep learning approach,” Eng. Appl. Artif. Intell., vol. 56, no. August, pp. 250–259, 2016. [CrossRef] [Google Scholar]
  55. F. Jia, Y. Lei, J. Lin, X. Zhou, and N. Lu, “Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data,” Mech. Syst. Signal Process., vol. 72-73, no. November, pp. 303–315, 2016. [CrossRef] [Google Scholar]
  56. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representatons by back-propagating errors.”. [Google Scholar]
  57. C. Li, R. V. Sanchez, G. Zurita, M. Cerrada, D. Cabrera, and R. E. Vásquez, “Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals,” Mech. Syst. Signal Process., vol. 76-77, pp. 283–293, 2016. [CrossRef] [Google Scholar]
  58. A. This, “Synchronization for Uncertain Neural Networks With Mixed Time Delays,” vol. 40, no. 1, pp. 173–185, 2010. [Google Scholar]
  59. L. Shao, L. Liu, and X. Li, “Feature Learning for Image Classification Via Multiobjective Genetic Programming,” Neural Networks Learn. Syst. IEEE Trans., vol. 25, no. 7, pp. 1359–1371, 2014. [CrossRef] [Google Scholar]
  60. J. Sun, Z. Xiao, and Y. Xie, “Automatic multi-fault recognition in TFDS based on convolutional neural network,” Neurocomputing, vol. 222, no. August 2016, pp. 127–136, 2017. [CrossRef] [Google Scholar]
  61. H. Jeong, S. Park, S. Woo, and S. Lee, “Rotating Machinery Diagnostics Using Deep Learning on Orbit Plot Images,” Procedia Manuf., vol. 5, pp. 1107–1118, 2016. [CrossRef] [Google Scholar]
  62. O. Janssens et al., “Convolutional Neural Network Based Fault Detection for Rotating Machinery,” J. Sound Vib., vol. 377, pp. 331–345, 2016. [CrossRef] [Google Scholar]
  63. X. Guo, L. Chen, and C. Shen, “Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis,” Meas. J. Int. Meas. Confed., vol. 93, pp. 490–502, 2016. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.