Open Access
Issue
MATEC Web Conf.
Volume 254, 2019
XXIII Polish-Slovak Scientific Conference on Machine Modelling and Simulations (MMS 2018)
Article Number 08002
Number of page(s) 11
Section Theoretical and Applied Mathematics in Engineering
DOI https://doi.org/10.1051/matecconf/201925408002
Published online 15 January 2019
  1. J. F. Ortiz-Yañez, M. R. Piña-Monarrez, Discrimination between the lognormal and Weibull distributions by using multiple linear regression. DYNA, 85 (205), 9-18, (2018) [CrossRef] [Google Scholar]
  2. B. Epstein, The mathematical description of certain breakage mechanism leading to the logarithmic-normal distribution. J Franklin Inst, 244, 471-477 (1974) [CrossRef] [Google Scholar]
  3. E. Limpert, W. Stahel, M. Abbt, Log-normal Distributions across the Sciences: Keys and Clues. BioScience, 51 (5), 341-352 (2001) [CrossRef] [Google Scholar]
  4. C. Steele, Use of the lognormal distribution for the coefficients of friction and wear. Reliab Eng Syst Safe, 93 (10), 1574-1576, (2008) [CrossRef] [Google Scholar]
  5. D. J. Finney, On the distribution of a variate whose logarithm is normally distributed. J. R. Stat. Soc. Ser. B. Soc. Ser, 7, 150-161 (1941) [Google Scholar]
  6. L. Jakubovičová, M. Vaško, M. Sága, P. Kopas, Experimental and computational comparative study of the specimens loaded by bending and torsion. MATEC Web Conf., 157 (02016), (2018) [CrossRef] [Google Scholar]
  7. P. Ďurčanský, P. Oršanský, Numerical simulation of heat exchanger operation. MATEC Web Conf., 168 (04001), (2018) [CrossRef] [Google Scholar]
  8. M. Vaško, M. Handrik, A. Sapietová, J. Handriková, Parallelization of computational algorithms for optimization problems with high time consumption. MATEC Web Conf., 157 (02054), (2018) [CrossRef] [Google Scholar]
  9. D. Wojtkowiak, I. Malujda, K. Talaśka, Ł. Magdziak, B. Wieczorek, Influence of construction mass distribution on the walking robot’s gait stability. Procedia Eng, 177, 419-424, (2017) [CrossRef] [Google Scholar]
  10. A. Vaško, Influence of SiC additive on microstructure and mechanical properties of nodular cast iron. Materials science (Medžiagotyra), 14 (4), 311-314, (2008) [Google Scholar]
  11. M. Kukla, J. Górecki, I. Malujda, K. Talaśka, P. Tarkowski, The determination of mechanical properties of magnetorheological elastomers (MREs). Procedia Eng, 177, 324-330, (2017) [CrossRef] [Google Scholar]
  12. H. Akaike, A new look at the statistical model identification, IEEE Trans Automat Contr, 19 (6), 716-723, (1974) [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  13. G. Schwarz, Estimating the dimension of a model, Ann. Statist.,6 (2), 461-464, (1978) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.