Open Access
Issue
MATEC Web Conf.
Volume 254, 2019
XXIII Polish-Slovak Scientific Conference on Machine Modelling and Simulations (MMS 2018)
Article Number 02041
Number of page(s) 10
Section Modelling and Simulation, Structural Optimization
DOI https://doi.org/10.1051/matecconf/201925402041
Published online 15 January 2019
  1. C. I. Barbinta, et al., Wheel-rail contact modelling and analysis, considering profilestypes and lateral displacement. Transport Research Arena: 5th Conference: TransportSolutions from Research to Deployment. Paris: 14.04.2014 17.04.2014. France: Paris.Accession Number: 01540797 (2014) [Google Scholar]
  2. J. Gerlici, T. Lack, Contact of rail wheelset and track: Žilina: University of Žilina, EDIS,200 (2004), ISBN 80-710000-317-5 [Google Scholar]
  3. R. Enblom, M. Berg, Simulation of railway wheel profile development due to wear –influence of disc braking and contact enviroment. Wear: an international journal on thescience and technology of friction, lubrication and wear 258, 1055-1063 (2004), ISSN:0043-1648 [Google Scholar]
  4. S. Gramblička, R. Kohár, M. Stopka, Dynamic analysis of mechanical coveyor drivesystem. Procedia Engineering 192, 259-264. (2017), ISSN 1877-7058 [CrossRef] [Google Scholar]
  5. M. Tomášiková, T. Gajdošík, M. Lukáč, F. Brumerčík, Simulation of planetary gearbox. Comunications: scientific letters of the University of Zilina 19 (2A), 48-53 (2017), ISSN1335-4205 [Google Scholar]
  6. Z. Pelagić, M. Nágeľ, M. Žmindák, D. Riecky, Wear simulation modeling by using thefinite element method. Manufacturing technology: Journal for science, research andproduction 15 (2), 191-195 (2015), ISSN 1213-2489 [Google Scholar]
  7. I. I. Argatov, Y. A. Fadin, Mathematical Modeling of the Periodic Wear Process inElastic Contact between Two Bodies. Journal of Friction and Wear 29 (2), 81-85 (2008),ISSN: 1068-3666 [CrossRef] [Google Scholar]
  8. T. G. Paerce, N. D. Sherrat, Prediction of wheel profile wear. Wear 144, 343-351 (1991),ISSN: 0043-1648 [CrossRef] [Google Scholar]
  9. M. Svoboda, J. Soukup, Dynamic Measurement of Four-Axle Railway Wagon. Manufacturing technology: Journal for science, research and production 13 (4), 552-558 (2013), ISSN 1213-2489 [Google Scholar]
  10. T. Lack, J. Gerlici, The FASTSIM method modification in speed up the calculation oftangential contact stresses between wheel and rail. Manufacturing technology: Journalfor science, research and production 13 (4), 486-492 (2013), ISSN 1213-2489 [Google Scholar]
  11. T. Lack, J. Gerlici, Contact area and normal stress determination on railway wheel /rail contact. Communications scientific letters of the University of Žilina 7 (2), 38-45 (2005), ISSN 1335-4205 [Google Scholar]
  12. P. Pecháč, M. Sága, Controlling of local search methods’ parameters in memetic algorithms using the principles of simulated annealing. Procedia Engineering 136, 70-76 (2016) [Google Scholar]
  13. J. Dižo, S. Steišunas, M. Blatnický, Vibration analysis of a coach with the wheel-flat due to suspension parameters changes. Procedia Engineering 192, 107-112. (2017), ISSN 1877-7058 [CrossRef] [Google Scholar]
  14. V. Hauser, et al., Impact of three axle boxes bogie to the tram behavior when passing curved track. Procedia Engineering 192, 295-300. (2017), ISSN 1877-7058 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.