Open Access
Issue |
MATEC Web Conf.
Volume 254, 2019
XXIII Polish-Slovak Scientific Conference on Machine Modelling and Simulations (MMS 2018)
|
|
---|---|---|
Article Number | 02019 | |
Number of page(s) | 8 | |
Section | Modelling and Simulation, Structural Optimization | |
DOI | https://doi.org/10.1051/matecconf/201925402019 | |
Published online | 15 January 2019 |
- J. Dantzigi M. Rappaz, Solidification, EPFL Press, Switzerland, 2009 [Google Scholar]
- R. Vaghefi, A. Nayebi, M. R. Hematiyani A. Khosravifard, Investigating the effects of mushy zone thickness on residual stresses in alloy solidification. Meccanica, tom 53, 905-922 (2018) [CrossRef] [Google Scholar]
- A. Matsushita, T. Nakazawa, T. Okanei M. Yoshida, Crack prediction for a partially solidified lead-free bronze casting using thermal stress analysis. Journal of Materials Processing Technology, tom 249, 46-56 (2017) [CrossRef] [Google Scholar]
- M. Cross, Control volume model of fluid flow, solidification and stress. Thames Polytechnic, London (1992) [Google Scholar]
- M. Heinlein, S. Mukherjeei O. Richmond, A boundary element method analysis of temperature fields and stress during solidification. Acta Mechanica, tom 59, 59-81 (1986) [CrossRef] [Google Scholar]
- N. Zabaras, Y. Ruani O. Richmond, On the calculation of deformations and stress during axially symmetric solidification. Journal of Applied Mechanics, tom 58, 865-871 (1991) [CrossRef] [Google Scholar]
- F. W. Hehli Y. Itin, The cauchy relations in linear elasticity theory. Journal of elasticity and the physical science of solids, tom 66, No. 2, 185-192, (2002) [Google Scholar]
- Y. Jiangi C. Wang, On teaching finite element method in plasticity with Mathematica. Computer Applications in Engineering Education, tom 16, No. 3, 233-242 (2008) [CrossRef] [Google Scholar]
- Q. Xu, B. Liui W. Feng, Microstructure simulation of aluminum alloy using parallel computing technique. ISIJ International, tom 42, No. 7, 702-707 (2002) [CrossRef] [Google Scholar]
- L. Klimesi J. Stetina, A rapid GPU-based heat transfer and solidification model for dynamic computer simulations of continuous steel casting. Journal of Materials Processing Technology, tom 226, 1-14 (2015) [CrossRef] [Google Scholar]
- E. Gawrońska, N. Sczygiol, Application of mixed time partitioning methods to raise the efficiency of solidification modeling. 12th Internaitonal Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2010), 99-103 (2011) [Google Scholar]
- S. Balay, S. Abhyankar, M. F. Adamsi e. al., PETSc users manual. Tech. Rep. ANL-95/11 Revision 3.7. Argonne National Laboratory, 2016. [Online]. Available: http://www.mcs.anl.gov/petsc. [Accessed 16.07.2018] [Google Scholar]
- H. K. Kodalii B. Ganapathysubramanian, A computational framework to investigate charge transport in heterogeheterogeneous. Computer Methods In Applied Mechanics And Engineering, tom 247, 113-129 (2012) [Google Scholar]
- “https://www.cgal.org/,” [Online]. Available: https://www.cgal.org/. [Accessed 23.08. 2017]. [Google Scholar]
- G. A. Keramidas, Finite element of the heat conduction equation with temperature dependent coefficients. Mathematics and Computers in Simulation, tom 22, No. 3, 248-255 (1980) [CrossRef] [Google Scholar]
- B. Pentenrieder, Finite Element Solutions of Heat Conduction Problems in Complicated 3D Geometries Using the Multigrid Method. Fakultat fur Informatik, TU Munchen, Munich, Germany (2005) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.