Open Access
MATEC Web Conf.
Volume 254, 2019
XXIII Polish-Slovak Scientific Conference on Machine Modelling and Simulations (MMS 2018)
Article Number 02018
Number of page(s) 10
Section Modelling and Simulation, Structural Optimization
Published online 15 January 2019
  1. Ordinance of the European Committee (EU) no. 651/2014 of June 17 2014, recognizing some kinds of assistance as compliant with the internal market for the purpose of Art. 107 and 108 of the Treaty. (CELEX: 32014R0651). [Google Scholar]
  2. D. Wilczyński, I. Malujda, K. Talaśka, R. Długi, The study of mechanical properties of natural polymers in the compacting process. Procedia Engineering, Vol. 177, 411-418 (2017) [CrossRef] [Google Scholar]
  3. K. Talaśka, I. Malujda, D. Wilczyński, Agglomeration of natural fibrous materials in perpetual screw technique – a challenge for designer. Procedia Engineering Vol. 136, 63-69 (2016) [CrossRef] [Google Scholar]
  4. I. Malujda, K. Talaśka, Identification of phenomena accompanying the process of compressing natural polymers. Procedia Engineering, Vol. 177, 369-374 (2017) [CrossRef] [Google Scholar]
  5. C. K. W. Ndiema, P. N. Manga, C. R. Ruttoh, Influence of die pressure on relaxation characteristics of briquetted biomass. Energy Conversion and Management, 43, 2157– 2161 (2002) [CrossRef] [Google Scholar]
  6. P. K. Adapa, J. Bucko, L. G. Tabil, G. Schoenau, S. Sokhansanj, Pelleting Characteristics of Fractionated Suncure and Dehydrated Alfalfa Grinds. ASAE/CSAE North-Central Intersectional Meeting, Saskatoon, Saskatchewan, Canada, September 27-28 (2002) [Google Scholar]
  7. P. K. Adapa, G. J. Schoenau, L. G. Tabil, S. Sokhansanj, B. Crerar, Pelleting of Fractionated Alfalfa Products. ASAE Annual International Meeting, Las Vegas, Nevada, USA, July 27-30 (2003) [Google Scholar]
  8. Y. Li, H. Liu, High pressure densification of wood residues to form an upgraded fuel. Biomass Bioenergy 19, 177-186 (2000) [Google Scholar]
  9. S. Mani, L. G. Tabil, S. Sokhansanj, Specific energy requirement for compacting corn stover. Bioresource Technology 97, 1420-1426 (2006) [CrossRef] [Google Scholar]
  10. K. Talaśka, Analysis of the energy efficiency of the shredded wood material densification process. Procedia Engineering, Vol. 177, 352-357 (2017) [CrossRef] [Google Scholar]
  11. C. Shang, I.C. Sinka, J. Pan, Constitutive Model Calibration for Powder Compaction Using Instrumented Die Testing, Experimental Mechanics, 52 (7), pp. 903-916, 2012 [CrossRef] [Google Scholar]
  12. I. C. Sinka, Modelling Powder Compaction, KONA Powder and Particle, No. 25(2007), pp. 4-22 [CrossRef] [Google Scholar]
  13. L.H. Han, J.A. Elliott, A.C. Bentham, A. Mills, G.E. Amidon, B.C. Hancock, A modified Drucker-Prager Cap model for die compaction simulation of pharmaceutical powders, International Journal of Solids and Structures 45 (2008), pp. 3088–3106 [Google Scholar]
  14. Tafzeelul Kamal, M. Arif Siddiqui, Modelling & Simulation of Die Compaction Process Using Modified Drucker-Prager Cap Model, International Journal of Scientific & Engineering Research Volume 8, Issue 7, ISSN 2229-5518, July-2017 [Google Scholar]
  15. P. R. Brewin, O. Coube, P. Doremus, J.H. Tweed, Modelling of Powder Die Compaction. Engineering Materials and Processes, Springer-Verlag London Limited (2008) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.