Open Access
Issue
MATEC Web Conf.
Volume 254, 2019
XXIII Polish-Slovak Scientific Conference on Machine Modelling and Simulations (MMS 2018)
Article Number 02011
Number of page(s) 9
Section Modelling and Simulation, Structural Optimization
DOI https://doi.org/10.1051/matecconf/201925402011
Published online 15 January 2019
  1. A.C. Oliveira, R.H.M. Siqueira, R. Riva, M.S.F. Lima, One-sided laser beam welding of autogenous T-joints for 6013-T4 aluminium alloy. Materials and Design, 65, 726-736 (2015) [CrossRef] [Google Scholar]
  2. A. Unta, I. Poutiainen, A. Salminen, Effects of sealing run welding with defocused laser beam on the quality of T-joint fillet weld. Physics Procedia: 8th International Conference on Photonic Technologies LANE 2014. 56, 497-506 (2014) [Google Scholar]
  3. W. Piekarska, M. Kubiak, Z. Saternus, S. Stano, and T. Domański, Numerical prediction of deformations in laser welded sheets made of X5Cr 18-10 steel. Archives of Metallurgy and Materials, 60, 3, 1965-1972 (2015) [CrossRef] [Google Scholar]
  4. S. Stano, J. Adamiec, J. Dworak, and M. Urbańczyk, Badania procesu spawania laserowego złączy teowych z cienkich blach ze stali austenitycznej. Biuletyn Instytutu Spawalnictwa, Poland, 5, 141-151 (2016) [Google Scholar]
  5. W. Piekarska, Z. Saternus, M. Kubiak and T. Domański, Numerical analysis of the influence heat source slope on the shape and size of fusion zone in laser welded T-joint. METAL 2016: 25th International Conference on Metallurgy and Material., Ostrava: TANGER, 688-693 (2016) [Google Scholar]
  6. J. Kozak, All steel sandwich panels – new possibilities introduced by laser welding techniques. Przegląd Spawalnictwa, 10, 53-59 (2007) [Google Scholar]
  7. D. Deng, H. Murakawa, FEM prediction of buckling distortion induced by welding in thin plate panel structures. Comput Mater Sci, 43, 591-607 (2008) [CrossRef] [Google Scholar]
  8. W. Piekarska, M. Kubiak, Z. Saternus, Numerical simulation of deformations in T-joint welded by the laser beam. Archiv Metall Mater., 58 (4) 1391-1396 (2013) [CrossRef] [Google Scholar]
  9. M. Kubiak, W. Piekarska, S. Stano, Z. Saternus, Numerical Modelling Of Thermal And Structural Phenomena In Yb:Yag Laser Butt-Welded Steel Elements. Arch Metall Mater, 60 (2), 821-828 (2015) [CrossRef] [Google Scholar]
  10. T. Domański, A. Sapietova, M. Saga, Application Of Abaqus Software For The Modeling Of Surface Progressive Hardening. Procedia Eng, 177, 64-69 (2017) [CrossRef] [Google Scholar]
  11. M. Sapieta, A. Sapietova, V. Dekys, Comparison of the thermoelastic phenomenon expressions in stainless steels during cyclic loading. Metalurgija, 56 (1-2), 203-206 (2017) [Google Scholar]
  12. M. Vasko, M. Blatnicky, P. Kopas, M. Saga, Research of weld joint fatigue life of the AlMgSi07.F25 aluminium alloy under bending-torsion cyclic loading. Metalurgija, 56 (1-2), 94-98 (2017) [Google Scholar]
  13. SIMULIA, Abaqus FEA theory manual. Version 6.7, Dassault System (2007) [Google Scholar]
  14. S.A. Tsirkas, P. Papanikos, Th. Kermanidis, Numerical simulation of the laser welding process in butt-joint specimens. J Mater Process Tech, 134, 59-69 (2003) [CrossRef] [Google Scholar]
  15. A. Bokota, T. Domański, Modelling and numerical analysis of hardening phenomena of tools steel elements. Archives Of Metallurgy And Materials, 575-587 (2009) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.