Open Access
MATEC Web Conf.
Volume 234, 2018
BulTrans-2018 – 10th International Scientific Conference on Aeronautics, Automotive and Railway Engineering and Technologies
Article Number 03003
Number of page(s) 6
Section Internal Combustion Engines
Published online 21 November 2018
  1. H. Hong, G. Parvate-Patil, B. Gordon, Review and analysis of variable valve timing strategies-eight ways to approach, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 218, 1179–1200 (2004) [CrossRef] [Google Scholar]
  2. M. Mikulski, P. Balakrishnan, E. Doosje, C. Bekdemir, Variable valve actuation strategies for better efficiency load range and thermal management in an RCCI engine, SAE Technical Paper 2018-01-0254 (2018) [Google Scholar]
  3. M. Yao, Z. Zheng, H. Liu, Progress and recent trends in homogeneous charge compression ignition (HCCI) engines, Progress in Energy and Combustion Science, 35, 398–437 (2009). [CrossRef] [Google Scholar]
  4. T. Sharma, G. Amba, P. Rao, K. Murthy, Effective reduction of NOx emissions of a HCCI (Homogeneous charge compression ignition) engine by enhanced rate of heat transfer under varying conditions of operation, Energy, 93, 2102–2115 (2015) [CrossRef] [Google Scholar]
  5. B. Çeper, M. Yıldız, S. Akansu, N. Kahraman, Performance and emission characteristics of an IC engine under SI, SI-CAI and CAI combustion modes, Energy, 136, 72–79 (2017) [CrossRef] [Google Scholar]
  6. K. Lee, S. Cho, N. Kim, K. Min, A study on combustion control and operating range expansion of gasoline HCCI, Energy, 91, 1038–1048 (2015) [CrossRef] [Google Scholar]
  7. J. Valero-Marco, B. Lehrheuer, J. López, S. Pischinger, Potential of water direct injection in a CAI/HCCI gasoline engine to extend the operating range towards higher loads, Fuel, 231, 317–327 (2018) [CrossRef] [Google Scholar]
  8. J. Lavy, J. Dabadie, C. Angelberger, P. Duret, J. Willand, A. Juretzka, J. Schäflein, T. Ma, Y. Lendresse, A. Satre, C. Schulz, H. Krämer, H. Zhao, L. Damiano, Innovative ultra-low NOX controlled auto-ignition combustion process for gasoline engines: the 4-SPACE project, SAE Technical Paper 2000-01-1837 (2000) [Google Scholar]
  9. G. Kontarakis, N. Collings, T. Ma, Demonstration of HCCI using a single cylinder four-stroke SI engine with modified valve timing, SAE Technical Paper 2000-01-2870 (2000) [Google Scholar]
  10. J. Dec, Y. Yang, Boosted HCCI for High Power without Engine Knock and with Ultra-Low NOx Emissions - using Conventional Gasoline, SAE International Journal of Engines, 3, 750–767 (2010) [CrossRef] [Google Scholar]
  11. J. Hunicz, An experimental study into the chemical effects of direct gasoline injection into retained residuals in a homogeneous charge compression ignition engine, International Journal of Engine Research, 17, 1031–1044 (2016) [CrossRef] [Google Scholar]
  12. I. Ekoto, B. Wolk, W. Northrop, N. Hansen, K. Moshammer, Tailoring charge reactivity using incylinder generated reformate for gasoline compression ignition strategies, Journal of Engineering for Gas Turbines and Power, 139, 122801 (2017) [CrossRef] [Google Scholar]
  13. T. Urushihara, K. Hiraya, A. Kakuhou, T. Itoh, Expansion of HCCI operating region by the combination of direct fuel injection, negative valve overlap and internal fuel reformation, SAE Technical Paper 2003-01-0749 (2003) [Google Scholar]
  14. J. Hunicz, M. Mikulski, Investigation of the thermal effects of fuel injection into retained residuals in HCCI engine, Applied Energy, 228, 1966–1984 (2018) [CrossRef] [Google Scholar]
  15. J. Hunicz, M. Geca, P. Kordos, H. Komsta, An experimental study on a boosted gasoline HCCI engine under different direct fuel injection strategies, Experimental Thermal and Fluid Science, 62, 151–163 (2015) [CrossRef] [Google Scholar]
  16. J. Hunicz, A. Tmar, P. Krzaczek, Effects of mixture stratification on combustion and emissions of boosted controlled auto-ignition engines, Energies, 10, 2172 (2017) [CrossRef] [Google Scholar]
  17. A. Turkcan, M. Altinkurt, G. Coskun, M. Canakci, Numerical and experimental investigations of the effects of the second injection timing and alcoholgasoline fuel blends on combustion and emissions of an HCCI-DI engine, Fuel, 219, 50–61 (2018) [CrossRef] [Google Scholar]
  18. J. Hunicz, P. Kordos, P. Ignaciuk, Experimental investigation into thermal and chemical effects of negative valve overlap injection in a gasoline HCCI engine, SAE Technical Paper 2014-01-2660 (2014) [Google Scholar]
  19. D. Yang, Z. Wang, J. Wang, S. Shuai, Experimental study of fuel stratification for HCCI high load extension, Applied Energy, 88, 2949–2954 (2011) [CrossRef] [Google Scholar]
  20. M. Sjöberg, J. Dec, N. Cernansky, Potential of thermal stratification and combustion retard for reducing pressure-rise rates in HCCI engines, Based on multizone modeling and experiments, SAE Technical Paper 2005-01-0113 (2005) [Google Scholar]
  21. A. Turkcan, A. Ozsezen, M. Canakci, G. Coskun, H. Soyhan, U. Demir, An experimental and modeling study to investigate effects of two-stage direct injection variations on HCCI combustion, Combustion Science and Technology, 187, 642–658 (2015) [CrossRef] [Google Scholar]
  22. M. Mikulski, C. Bekdemir, Understanding the role of low reactivity fuel stratification in a dual fuel RCCI engine - A simulation study, Applied Energy, 191, 689–708 (2017) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.