Open Access
MATEC Web Conf.
Volume 232, 2018
2018 2nd International Conference on Electronic Information Technology and Computer Engineering (EITCE 2018)
Article Number 04023
Number of page(s) 5
Section Circuit Simulation, Electric Modules and Displacement Sensor
Published online 19 November 2018
  1. Mota A R, Duarte L, Rodrigues D, et al. Development of a quasi-dry, electrode for EEG recording[J]. Sensors & Actuators A Physical, 2013, 199(9): 310-317. [CrossRef] [Google Scholar]
  2. Wang L F, Liu J Q, Yang B, et al. PDMS-Based Low Cost Flexible Dry Electrode for Long-Term EEG Measurement[J]. IEEE Sensors Journal, 2012, 12(9): 2898-2904. [CrossRef] [Google Scholar]
  3. Reis P M, Hebenstreit F, Gabsteiger F, et al. Methodological aspects of EEG and body dynamics measurements during motion[J]. Frontiers in Human Neuroscience, 2014, 8(5):156. [Google Scholar]
  4. Lopez-Gordo MA, Sanchez-Morillo D, Pelayo Valle F. Dry EEG electrodes[J]. Sensors, 2014, 14(7): 12847-12870. [Google Scholar]
  5. Khosrowabadi R, Heijnen M, Wahab A, et al. The dynamic emotion recognition system based on functional connectivity of brain regions[C]// Intelligent Vehicles Symposium. IEEE, 2010:377-381. [Google Scholar]
  6. Bhagwat A R, Paithane A N. Human disposition detection using EEG signals[C]// International Conference on Computing, Analytics and Security Trends. IEEE, 2017:366-370. [Google Scholar]
  7. Taran S, Bajaj V. Rhythm based identification of alcohol EEG signals[J]. Iet Science Measurement Technology, 2017, 12(3). [Google Scholar]
  8. Aldana Y R, Hunyadi B, Reyes E J M, et al. Nonconvulsive epileptic seizures detection using multiway data analysis[C]// European Signal Processing Conference. 2017:2344-2348. [Google Scholar]
  9. Gupta A, Singh P, Karlekar M. A Novel Signal Modeling Approach for Classification of Seizure and Seizure-free EEG Signals[J]. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 2018, PP(99):1-1. [Google Scholar]
  10. Busonera G, Cogoni M, Puligheddu M, et al. EEG Spectral Coherence Analysis in Nocturnal Epilepsy[J]. IEEE Transactions on Biomedical Engineering, 2018, PP(99):1-1. [Google Scholar]
  11. Ma Q, Cowan C F N. Genetic algorithms applied to the adaptation of IIR filters[J]. Signal Processing, 1996, 48(2): 155-163. [CrossRef] [Google Scholar]
  12. Hashemi S A, Nowrouzian B. A novel finite-wordlength particle swarm optimization technique for FRM IIR digital filters[C]// IEEE International Symposium on Circuits and Systems. IEEE, 2011:2745-2748. [Google Scholar]
  13. Chang Y N, Parhi K K. Architectures for digital filters using stochastic computing[C]// IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2013:2697-2701. [Google Scholar]
  14. Sidhu D S, Dhillon J S, Kaur D. Hybrid heuristic search method for design of digital IIR filter with conflicting objectives[J]. Soft Computing, 2016:1-16. [Google Scholar]
  15. Gao Y, Li Y, Qian H. The Design of IIR Digital Filter Based on Chaos Particle Swarm Optimization Algorithm[C]// International Conference on Genetic and Evolutionary Computing. IEEE, 2008:303-306. [Google Scholar]
  16. Xu W, Fang W, Sun J, et al. An improved quantum-behaved particle swarm optimization and its application to digital IIR filter design[C]// IECON 2009 -, Conference of IEEE Industrial Electronics. IEEE, 2009:2003-2008. [Google Scholar]
  17. Yu X, Liu J, Li H. An Adaptive Inertia Weight Particle Swarm Optimization Algorithm for IIR Digital Filter[C]// International Conference on Artificial Intelligence and Computational Intelligence. IEEE, 2010:114-118. [Google Scholar]
  18. Nishimura Y, Suyama K. An Avoidance of Local Minimum Stagnation in IIR Filter Design Using PSO[J]. Ieice Transactions on Fundamentals of Electronics Communications & Computer Sciences, 2015, 98(7): 1544-1548. [CrossRef] [Google Scholar]
  19. H. Gao, Y. Liang, D. Liu and M. Diao, IIR digital filter design based on cultural quantum-inspired flower pollination algorithm[C]// 2017 IEEE 17th International Conference on Communication Technology (ICCT), Chengdu, China, 2017, pp. 1693-1697. [Google Scholar]
  20. Kennedy J, Eberhart R C. Particle swarm optimization. Perth: Proceedings of the IEEE International Conference on Neural Networks. Piscataway: IEEE Press, 1995:1942–1948. [Google Scholar]
  21. Zhang Y N, Teng H F. Detecting particle swarm optimization[M]. John Wiley and Sons Ltd. 2009. [Google Scholar]
  22. Soudan B, Saad M. An Evolutionary Dynamic Population Size PSO Implementation[C]// International Conference on Information and Communication Technologies: From Theory To Applications. IEEE, 2008:1-5. [Google Scholar]
  23. REN Wanlong, HAO Zongrui, WANG Yue, et al. Application of improved particle swarm algorithm in 3D design of hydrofoil[J]. Journal of Jiangsu University (Natural Science Edition), 2017, 38(02): 168-172. [Google Scholar]
  24. SHANG Junna, SHENG Lin, CHENG Tao, et al. The Indoor Localization Based on LQI weight and Improved Particle Swarm Optimization Algorithm[J]. Chinese Journal of Sensors and Actuators, 2017, 30(02): 284-290. [Google Scholar]
  25. Tian W, Zhu X. The Application of Improved PSO Algorithm in the Geometric Constraint Solving[C]// International Conference on Computer Network, Electronic and Automation. IEEE Computer Society, 2017:156-159. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.