Issue |
MATEC Web of Conferences
Volume 61, 2016
The International Seminar on Applied Physics, Optoelectronics and Photonics (APOP 2016)
|
|
---|---|---|
Article Number | 06004 | |
Number of page(s) | 5 | |
Section | Chapter 6 Optoelectronics and Photonics | |
DOI | https://doi.org/10.1051/matecconf/20166106004 | |
Published online | 28 June 2016 |
Intelligent Technique for Signal Processing to Identify the Brain Disorder for Epilepsy Captures Using Fuzzy Systems
School of Computing Science and Engineering, VIT University, India
The new direction of understand the signal that is created from the brain organization is one of the main chores in the brain signal processing. Amid all the neurological disorders the human brain epilepsy is measured as one of the extreme prevalent and then programmed artificial intelligence detection technique is an essential due to the crooked and unpredictable nature of happening of epileptic seizures. We proposed an Improved Fuzzy firefly algorithm, which would enhance the classification of the brain signal efficiently with minimum iteration. An important bunching technique created on fuzzy logic is the Fuzzy C means. Together in the feature domain with the spatial domain the features gained after multichannel EEG signals remained combined by means of fuzzy algorithms. And for better precision segmentation process the firefly algorithm is applied to optimize the Fuzzy C-means membership function. Simultaneously for the efficient clustering method the convergence criteria are set. On the whole the proposed technique yields more accurate results and that gives an edge over other techniques. This proposed algorithm result compared with other algorithms like fuzzy c means algorithm and PSO algorithm.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.