Open Access
Issue
MATEC Web Conf.
Volume 232, 2018
2018 2nd International Conference on Electronic Information Technology and Computer Engineering (EITCE 2018)
Article Number 02007
Number of page(s) 5
Section 3D Images Reconstruction and Virtual System
DOI https://doi.org/10.1051/matecconf/201823202007
Published online 19 November 2018
  1. Zhang, L., Ai, J., Jiang, B., Lu, H., & Li, X. (2018). Saliency Detection via Absorbing Markov Chain With Learnt Transition Probability. IEEE Transactions on Image Processing, 27(2), 987–998. [CrossRef] [Google Scholar]
  2. Guo, C., Ma, Q., & Zhang, L. (2008). Spatio-temporal Saliency detection using phase spectrum of quaternion fourier transform. In 2008 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1–8). [Google Scholar]
  3. Zhang, L., Yang, C., Lu, H., Ruan, X., & Yang, M.-H. (2017). Ranking Saliency. IEEE Transactions on Pattern Analysis and Machine Intelligence. [Google Scholar]
  4. Judd, T. M., Ehinger, K. A., Durand, F., & Torralba, A. (2009). Learning to predict where humans look. In 2009 IEEE 12th International Conference on Computer Vision (pp. 2106–2113). [CrossRef] [Google Scholar]
  5. Cheng, M.-M., Zhang, G.-X., Mitra, N. J., Huang, X., & Hu, S.-M. (2011). Global contrast based salient region detection. In IEEE Transactions on Pattern Analysis and Machine Intelligence (Vol. 37, pp. 409– 416). [Google Scholar]
  6. Wei, Y., Wen, F., Zhu, W., & Sun, J. (2012). Geodesic saliency using background priors. In ECCV’12 Proceedings of the 12th European conference on Computer Vision Volume Part III (pp. 29–42). [Google Scholar]
  7. Yang, C., Zhang, L., Lu, H., Ruan, X., & Yang, M.-H. (2013). Saliency Detection via Graph-Based Manifold Ranking. In 2013 IEEE Conference on Computer Vision and Pattern Recognition (pp. 3166– 3173). [CrossRef] [Google Scholar]
  8. Wang, T., Borji, A., Zhang, L., Zhang, P., & Lu, H. (2017). A Stagewise Refinement Model for Detecting Salient Objects in Images. In 2017 IEEE International Conference on Computer Vision (ICCV) (pp. 4039– 4048). [CrossRef] [Google Scholar]
  9. Li, G., & Yu, Y. (2015). Visual saliency based on multiscale deep features. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 5455–5463). [Google Scholar]
  10. Wang, L., Lu, H., Ruan, X., & Yang, M.-H. (2015). Deep networks for saliency detection via local estimation and global search. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 3183–3192). [CrossRef] [Google Scholar]
  11. Wang, L., Wang, L., Lu, H., Zhang, P., & Ruan, X. (2016). Saliency Detection with Recurrent Fully Convolutional Networks. In European Conference on Computer Vision (pp. 825–841). [Google Scholar]
  12. Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., & Shum, H.-Y. (2011). Learning to Detect a Salient Object. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(2), 353–367. [CrossRef] [Google Scholar]
  13. Judd, T., Durand, F., & Torralba, A. (2012). A Benchmark of Computational Models of Saliency to Predict Human Fixations. [Google Scholar]
  14. Yan, Q., Xu, L., Shi, J., & Jia, J. (2013). Hierarchical Saliency Detection. In 2013 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1155– 1162). [CrossRef] [Google Scholar]
  15. Li, Y., Hou, X., Koch, C., Rehg, J. M., & Yuille, A. L. (2014). The Secrets of Salient Object Segmentation. In CVPR ’14 Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (pp. 280–287). [CrossRef] [Google Scholar]
  16. Movahedi, V., & Elder, J. H. (2010). Design and perceptual validation of performance measures for salient object segmentation. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (pp. 49–56). [Google Scholar]
  17. Li, G., & Yu, Y. (2015). Visual saliency based on multiscale deep features. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 5455–5463). [Google Scholar]
  18. Alpert, S., Galun, M., Brandt, A., & Basri, R. (2012). Image Segmentation by Probabilistic Bottom-Up Aggregation and Cue Integration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(2), 315–327. [Google Scholar]
  19. Xie, L., Pan, W., Tang, C., & Hu, H. (2014). A pyramidal deep learning architecture for human action recognition. International Journal of Modelling, Identification and Control, 21(2), 139–146. [CrossRef] [Google Scholar]
  20. Wang, T., Zhang, L., Lu, H., Sun, C., & Qi, J. (2016). Kernelized Subspace Ranking for Saliency Detection. In European Conference on Computer Vision (pp. 450–466). [Google Scholar]
  21. Kim, J., & Pavlovic, V. (2016). A Shape-based Approach for Salient Object Detection Using Deep Learning. In European Conference on Computer Vision (pp. 455–470). [Google Scholar]
  22. Liu, N., & Han, J. (2016). DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 678– 686). [CrossRef] [Google Scholar]
  23. Xu, Y., Li, J., Chen, J., Shen, G., & Gao, Y. (2017). A novel approach for visual Saliency detection and segmentation based on objectness and top-down attention. In 2017 2nd International Conference on Image, Vision and Computing (ICIVC) (pp. 361–365). [Google Scholar]
  24. Wang, X., & Duan, H. (2017). Hierarchical visual attention model for saliency detection inspired by avian visual pathways. IEEE/CAA Journal of Automatica Sinica, 1–13. [Google Scholar]
  25. Jian, M., Lam, K.-M., Dong, J., & Shen, L. (2015). Visual-Patch-Attention-Aware Saliency Detection. IEEE Transactions on Systems, Man, and Cybernetics, 45(8), 1575–1586. [Google Scholar]
  26. Kuen, J., Wang, Z., & Wang, G. (2016). Recurrent Attentional Networks for Saliency Detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 3668–3677). [CrossRef] [Google Scholar]
  27. Borji, A., Cheng, M., Jiang, H., & Li, J. (2014). Salient Object Detection: A Survey. ArXiv Preprint ArXiv:1411.5878. [Google Scholar]
  28. Sebastian, E., & Daniel, N. (2017). A Survey on Various Saliency Detection Methods. International Journal of Computer Applications, 161(5), 5–8. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.