Open Access
MATEC Web Conf.
Volume 228, 2018
2018 3rd International Conference on Circuits and Systems (CAS 2018)
Article Number 01006
Number of page(s) 6
Section Intelligent Computing and Information Processing
Published online 14 November 2018
  1. R. P. Agarwal, D. O’Regan, S H Saker, Oscillation criteria for second-order nonlinear neutral delay dynamic equations, J. Math Anal. and Appl., doi:10.1016/j.jmaa.2004.06.041. [Google Scholar]
  2. S. Hilger, Analysis on measure chains – a unified approach to continuous and discrete calculus, Results Math., 1990, 18 (1-2): 18-56. [CrossRef] [Google Scholar]
  3. S. H. Saker, D. O’Regan, New oscillation criteria for second-order neutral dynamic equations on time scales via Riccati substitution. Hiroshima Mathematical Journal, 2012, 42(2012):77-98. [CrossRef] [Google Scholar]
  4. R. Wang, Q. Li, Oscillation and asymptotic properties of a class of second-order Emden–Fowler neutral differential equations, Springerplus, 2016, 5(1):1956. [CrossRef] [Google Scholar]
  5. B. Karpuz, Sufficient Conditions for the Oscillation of Odd-Order Neutral Dynamic Equations, International Journal of Analysis and Applications, 2017, 14 (1): 69-76. [Google Scholar]
  6. T. Li, Z. Han, S. Sun, D. Yang, Existence of nonoscillatory solutions to second-order neutral delay dynamic equations on time scales, Adv. Differ. Equ. 2009 (2009), Article ID 562329, 1-10. [Google Scholar]
  7. Gaihua Gui Z X. Oscillation criteria for second-order neutral differential equations with distributed deviating arguments. Electronic Journal of Differential Equations, 2007, 2007(3):249-266. [Google Scholar]
  8. Y. Bai, L. Liu. New Oscillation Criteria for Second-Order Neutral Delay Differential Equations with Positive and Negative Coefficients, Abstract & Applied Analysis, 2014, 2010(2-4):331-336. [Google Scholar]
  9. Q. Hao, F. Lu, Oscillation theorem for superlinear second order damped differential equations, Appl. Math. Comput, 217 (2011) 7126-7131. [Google Scholar]
  10. Y. Bolat, Oscillation criteria for nonlinear second-order difference equations with a nonlinear damped term, Appl. math. Lett. 18 (2005) 329-338. [Google Scholar]
  11. J. Jiang, X. Li, Oscillation of second order nonlinear neutral differential equations, Appl. Math. Comput, 135 (2003) 531-540. [Google Scholar]
  12. Y. Sui, and S. Sun, Oscillation of third order nonlinear damped dynamic equation with mixed arguments on time scales, Adv. Diff. Equ., (2018) 2018:233 [CrossRef] [Google Scholar]
  13. Y. Sui, Z. Han, Oscillation of third-order nonlinear delay dynamic equation with damping term on time scales, J. Appl. Math. Comput. (2018) 58, [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.