Open Access
MATEC Web Conf.
Volume 228, 2018
2018 3rd International Conference on Circuits and Systems (CAS 2018)
Article Number 01007
Number of page(s) 5
Section Intelligent Computing and Information Processing
Published online 14 November 2018
  1. T. L. Carrol, L. M. Pecora. Synchronizing chaotic circuits [J]. IEEE Transactions on Circuits and Systems, 1991, 38 (4):453-456. [CrossRef] [Google Scholar]
  2. C. Tao, Y. Zhang, G. Du, J. J. Jiang. Estimating model parameters by chaos synchronization [J]. Physical Review E Statistical Nonlinear and Soft Matter Physics, 2004, 69 (3): 036204. [CrossRef] [Google Scholar]
  3. G. Kolumbán, M. P. Kennedy, L. O. Chua. The role of synchronization in digital communications using chaos-part II: chaotic modulation and chaotic synchronization [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1998, 45 (11): 1129-1140. [CrossRef] [Google Scholar]
  4. T. Yang, L. B. Yang, C. M. Yang. Breaking chaotic switching using generalized synchronization: Examples [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1998, 45 (10): 1062-1067. [CrossRef] [Google Scholar]
  5. G. Kaddoum, V. Mai, F. Gagnon. Performance analysis of differential chaotic shift keying communications in MIMO systems [J]. IEEE International Symposium on Circuits and Systems, 2011, 19 (5): 1580-1583. [Google Scholar]
  6. Z. Mauricio, V. Yolanda, A. Leonardo. A secure communication scheme based on chaotic Duffing oscillators and frequency estimation for the transmission of binary-coded messages [J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19 (4): 991-1003. [CrossRef] [Google Scholar]
  7. A. B. Nordmark. Non-periodic motion caused by grazing incidence in an impact oscillator [J]. Journal of Sound and Vibration, 1991, 145 (2): 279-297. [CrossRef] [Google Scholar]
  8. R. I. Leine, D. H. V. Campen. Bifurcation phenomena in non-smooth dynamical systems [J]. European Journal of Mechanics-A/Solids, 2006, 25 (4): 595-616. [CrossRef] [Google Scholar]
  9. J. Awrejcewicz, Y. Pyryev. Chaos prediction in the duffing-type system with friction using Melnikov’s function [J]. Nonlinear Analysis Real World Applications, 2006, 7 (1): 12-24. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.