Open Access
Issue
MATEC Web Conf.
Volume 226, 2018
XIV International Scientific-Technical Conference “Dynamic of Technical Systems” (DTS-2018)
Article Number 04042
Number of page(s) 8
Section 4 Fundamental methods of system analysis, modeling and optimization of dynamic systems
DOI https://doi.org/10.1051/matecconf/201822604042
Published online 07 November 2018
  1. A. Grumezescu, A. M. Holban, Food Processing for Increased Quality and Consumption, Academic Press (2018) [Google Scholar]
  2. M. Petkovic, B. Pajin, J Tomic, A. Torbica, Z. Serse, D. Zaric, Chemical Industry, 66, 385 (2012) DOI: 10.2298/HEMIND110902094P] [CrossRef] [Google Scholar]
  3. L. Bobroff, Ed.: K.W. O’Neil and R.L. Peterson, F.L. Sarasota, Book chapter: Nutrition and Diet, Handbook: Optimal Aging LLC, 627 (2004) [Google Scholar]
  4. N. O`Brien, 3th ed. Alternative Sweeteners (World Wide Web, New York, 2001) [Google Scholar]
  5. F. Douglas, Formulation and production of chewing and bubble gum (Kennedy’s Publications Ltd, London, 2006) [Google Scholar]
  6. A. L. Nelson, Sweeteners: Alternative (Eagan Press, Minnesota, 2000) [Google Scholar]
  7. M. E. Embuscado, S. K. Patil, Reduced-calorie sweeteners, (World Wide Web, New York, 2001) [Google Scholar]
  8. M. Awad, R. Khanna, Deep Neural Networks. In: Efficient Learning Machines. (Apress, Berkeley, CA, 2015) [Google Scholar]
  9. B. Pajin, A. Fistes, LJ. Dokic, I. Nikolic, Chem. Ind. J., 67 (5), 747 (2013) [CrossRef] [Google Scholar]
  10. B. Pajin, A. Fistes, J. Petrovic, A. Torbica, Optimization of the ball mill processing parameters in the fat filling Production CICEQ, 23 (2), 197 (2017) [Google Scholar]
  11. SRPS ISO 5496:2014 - Sensory analysis -- Methodology -- Initiation and training of assessors in the detection and recognition of odours [Google Scholar]
  12. SRPS EN ISO 10399:2018 - Sensory analysis - Methodology - Duo-trio test (ISO 10399:2017) [Google Scholar]
  13. SRPS ISO 8588:2018 - Sensory analysis -- Methodology -- “A” - “not A” test [Google Scholar]
  14. SRPS ISO 8587:2013/A1:2016 - This International Standard describes a method for sensory evaluation with the aim of placing a series of test samples in rank order [Google Scholar]
  15. SRPS EN ISO 4120:2012 - Sensory analysis - Methodology - Triangle test (ISO 4120:2004) [Google Scholar]
  16. SRPS EN ISO 5495:2012/A1:2016 - Sensory analysis - Methodology - Paired comparison test (ISO 5495:2005/Amd 1:2016) [Google Scholar]
  17. SRPS ISO 5496:2014 - Sensory analysis -- Methodology -- Initiation and training of assessors in the detection and recognition of odours [Google Scholar]
  18. SRPS EN ISO 10399:2018 - Sensory analysis - Methodology - Duo-trio test (ISO 10399:2017) [Google Scholar]
  19. SRPS ISO 8588:2018 - Sensory analysis -- Methodology -- “A” - “not A” test [Google Scholar]
  20. SRPS ISO 8587:2013/A1:2016 - This International Standard describes a method for sensory evaluation with the aim of placing a series of test samples in rank order [Google Scholar]
  21. SRPS EN ISO 4120:2012 - Sensory analysis - Methodology - Triangle test (ISO 4120:2004) [Google Scholar]
  22. SRPS EN ISO 5495:2012/A1:2016 - Sensory analysis - Methodology - Paired comparison test (ISO 5495:2005/Amd 1:2016) [Google Scholar]
  23. PETKOVIC M., The effects of producing parameters on physical properties, thermal characteristics and quality of spreads with maltitol [thesis]. Novi Sad; Faculty of Technology University of Novi Sad; (2012) [Google Scholar]
  24. HAYKIN S. O., Neural Networks and Learning Machines, 3rd Edn. Upper Saddle River, NJ: Pearson/Prentice Hall, (2009) [Google Scholar]
  25. ISO/IEC 2382-34:1999 Information technology - Vocabulary - Part 34: Artificial intelligence -Neural Networks (1999) [Google Scholar]
  26. C. Draper, R. Reichle, R. Jeu, V. Naemi, R. Parinussa, W. WAGNER, Remote Sens. Environ., 137, 288 (2013) [CrossRef] [Google Scholar]
  27. Ke-Lin Du, M. N. S. Swamy, Neural Networks and Statistical Learning (Springer-Verlag, London, 2014) [Google Scholar]
  28. J. Schmidhuber, Neural Networks, 61, 85 arXiv:1404.7828 Freely accessible. doi: 10.1016/j.neunet.2014.09.003. PMID 25462637 (2015) [Google Scholar]
  29. D. Pokrajac, K. Sudler, P. Edamatsu, T. Hardee, 13th Symposium on Neural Networks and Applications (NEUREL), 1 (2016) DOI: 10.1109/NEUREL.2016.7800124 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.