Open Access
MATEC Web Conf.
Volume 224, 2018
International Conference on Modern Trends in Manufacturing Technologies and Equipment (ICMTMTE 2018)
Article Number 01124
Number of page(s) 7
Section Manufacturing Technologies, Tools and Equipment
Published online 30 October 2018
  1. Loeber L., Biamino S., Ackelid U. et al. Comparison of Selective Laser and Electron Beam Melted Titanium Aluminides. Conference paper of 22nd International symposium “Solid freeform fabrication proceedings”, University of Texas, Austin, 2011, pp. 547–556. [Google Scholar]
  2. Song B., Dong S., Zhang B. et al. Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V. Materials & Design, Vol. 35, pp. 120–125 (2012). [CrossRef] [Google Scholar]
  3. Gu D.D., Meiners W., Wissenbach K., Poprawe R. Laser additive manufacturing of metallic components: materials, processes and mechanisms. International Materials Reviews, Vol. 57 (3), pp. 133–164 (2012) [Google Scholar]
  4. Biamino S., Penna A., Ackelid U et al. Electron beam melting of Ti–48Al–2Cr–2Nb alloy: microstructure and mechanical properties investigation. Intermetallics, Vol. 19, pp. 776–781 (2011). [CrossRef] [Google Scholar]
  5. Song B., Dong S., Coddet P. et al. Fabrication and microstructure characterization of selective laser melted FeAl intermetallic parts. Surface and Coatings Technology, Vol. 206, pp. 4704–4709 (2012) [CrossRef] [Google Scholar]
  6. Safdar A., He H.Z., Wei L.Y., Snis A. et al. Effect of process parameters settings and thickness on surface roughness of EBM produced Ti–6Al–4V, Rapid Prototyping Journal, Vol. 18 (5), pp.401–408 (2012). [CrossRef] [Google Scholar]
  7. Wang Z., Guana K., Gaoa M. The microstructure and mechanical properties of deposited-IN718 by selective laser melting. Journal of Alloys and Compounds, Vol. 513, pp. 518–523 (2012). [CrossRef] [Google Scholar]
  8. Safdar A., Wei L.Y., Snis A., Lai Z. Evaluation of microstructural developmentin electron beam melted Ti–6Al–4V. Materials Characterization, Vol. 65, pp. 8–15 (2012). [CrossRef] [Google Scholar]
  9. E.V. Ageeva, A.Yu. Altukhov, S.V. Khardikov, S.S. Gulidin, A.N. Novikov, Electroerosive Powder Obtained from Alloy VK8 Waste into Butanol, Journal of nanoand electronic physics, Vol. 7, No 4, Part 2, P. 04080(3) (2015). [Google Scholar]
  10. E.V. Ageeva, E.V. Ageev, S.V. Pikalov, E.A. Vorobiev, A.N. Novikov, X-ray Analisis of the Powder of Microand Nanometer Fractions, Obtained from Wastes of Alloy T15K6 in Aqueous Medium, Journal of nano- and electronic physics, Vol. 7, No 4, Part 2, P. 04058(2) (2015). [Google Scholar]
  11. V. Ageevа, E.V. Ageev, V.Yu. Karpenko, A.S. Osminina, Studing Tungsten-containing Electroerosion Powders and Alloys Synthesized from Them, Journal of nanoand electronic physics, Vol. 3, p. 03049-1–03049-3 (2014). [Google Scholar]
  12. E.V. Ageeva, E.V. Ageev, N.M. Horyakova, V.S. Malukhov, Production of copper electroerosion nanopowders from wastes in kerosene medium, Journal of nanoand electronic physics, Vol. 3, p. 03011-1–03011-3 (2014). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.