Open Access
Issue
MATEC Web Conf.
Volume 221, 2018
2018 3rd International Conference on Design and Manufacturing Engineering (ICDME 2018)
Article Number 01004
Number of page(s) 5
Section Functional Material Design and Analysis
DOI https://doi.org/10.1051/matecconf/201822101004
Published online 29 October 2018
  1. Sasikumar KSK, Arulshri KP, Ponappa K, Uthayakumar M (2016) A study on kerf characteristics of hybrid aluminium 7075 metal matrix composites machined using abrasive water jet machining technology. Proc Inst Mech Eng Part B J Eng Manuf 232:690–704. doi: 10.1177/0954405416654085 [CrossRef] [Google Scholar]
  2. Jagadish, Bhowmik S, Ray A (2015) Prediction of surface roughness quality of green abrasive water jet machining: a soft computing approach. J Intell Manuf 1–15. doi: 10.1007/s10845-015-1169-7 [Google Scholar]
  3. Chaturvedi V, Singh D (2015) Multi Response Optimization of Process Parameters of Abrasive Water Jet Machining for Stainless Steel AISI 304 Using VIKOR Approach Coupled with Signal to Noise Ratio Methodology. J Adv Manuf Syst 14:107–121. doi: 10.1142/S0219686715500080 [CrossRef] [Google Scholar]
  4. Gupta MK (2015) Optimization of machining parameters for turning AISI 4340 steel using Taguchi based grey relational analysis. Indian J Eng Mater Sci 22:679–685. [Google Scholar]
  5. Gupta MK, Singh G, Sood PK (2015) Modelling and Optimization of Tool Wear in Machining of EN24 Steel Using Taguchi Approach. J Inst Eng Ser C 96:269–277. doi: 10.1007/s40032-015-0175-z [CrossRef] [Google Scholar]
  6. Biswas SA, Datta S, Bhaumik S, Majumdar G (2009) MULTI-RESPONSE OPTIMIZATION : A CASE STUDY IN. 2009:26–28. [Google Scholar]
  7. Thakur DG, Ramamoorthy B, Vijayaraghavan L (2009) Optimization of Minimum Quantity Lubrication Parameters in High Speed Turning of Superalloy Inconel 718 for Sustainable Development. World Acad Sci Eng Technol 54:224–226. [Google Scholar]
  8. Neşeli S, Yaldız S, Türkeş E (2011) Optimization of tool geometry parameters for turning operations based on the response surface methodology. Measurement 44:580–587. doi: http://dx.doi.org/10.1016/j.measurement.2010.11.018 [CrossRef] [Google Scholar]
  9. Guodong L, Yong L, Quancun K, Hao T (2016) Selection and Optimization of Electrolyte for Micro Electrochemical Machining on Stainless Steel 304. Procedia CIRP 42:412–417. doi: 10.1016/j.procir.2016.02.223 [CrossRef] [Google Scholar]
  10. Yildiz AR, Öztürk F (2010) Hybrid Taguchi-Harmony Search Approach for Shape Optimization. In: Geem ZW (ed) Recent Adv. Harmon. Search Algorithm. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 89–98 [CrossRef] [Google Scholar]
  11. Gupta MK, Sood PK, Sharma VS (2016) Optimization of machining parameters and cutting fluids during nano-fluid based minimum quantity lubrication turning of titanium alloy by using evolutionary techniques. J Clean Prod 135:1276–1288. doi: 10.1016/j.jclepro.2016.06.184 [CrossRef] [Google Scholar]
  12. Lan T-S (2009) Taguchi optimization of multi-objective CNC machining using TOPSIS. Inf Technol J 8:917–922. [CrossRef] [Google Scholar]
  13. Gauri SK, Chakravorty R, Chakraborty S (2011) Optimization of correlated multiple responses of ultrasonic machining (USM) process. Int J Adv Manuf Technol 53:1115–1127. doi: 10.1007/s00170-010-2905-y [CrossRef] [Google Scholar]
  14. Vazquez E, Ciurana J, Rodríguez CA, et al. (2011) Swarm intelligent selection and optimization of machining system parameters for microchannel fabrication in medical devices. Mater Manuf Process 26:403–414. [CrossRef] [Google Scholar]
  15. Ciurana J, Arias G, Ozel T (2009) Neural network modeling and particle swarm optimization (PSO) of process parameters in pulsed laser micromachining of hardened AISI H13 steel. Mater Manuf Process 24:358–368. [CrossRef] [Google Scholar]
  16. Ulutan D, Özel T (2013) Multiobjective optimization of experimental and simulated residual stresses in turning of nickel-alloy IN100. Mater Manuf Process 28:835–841. [CrossRef] [Google Scholar]
  17. Pawar PJ, Rao R V, Davim JP (2010) Multiobjective optimization of grinding process parameters using particle swarm optimization algorithm. Mater Manuf Process 25:424–431. [Google Scholar]
  18. Venkata Rao R, Kalyankar VD (2013) Parameter optimization of modern machining processes using teaching-learning-based optimization algorithm. Eng Appl Artif Intell 26:524–531. doi: 10.1016/j.engappai.2012.06.007 [CrossRef] [Google Scholar]
  19. Venkata Rao R, Kalyankar VD (2011) Parameter Optimization of Machining Processes Using a New Optimization Algorithm. Mater Manuf Process 27:978–985. doi: 10.1080/10426914.2011.602792. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.