Issue |
MATEC Web of Conferences
Volume 62, 2016
2016 3rd International Conference on Chemical and Food Engineering
|
|
---|---|---|
Article Number | 04003 | |
Number of page(s) | 6 | |
Section | Chemistry Engineering | |
DOI | https://doi.org/10.1051/matecconf/20166204003 | |
Published online | 28 June 2016 |
Physical and Electrochemical Characterization of Palm Kernel Shell Biochar (PKSB) as Supercapacitor
1 Department of Chemical and environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
2 Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
A potential low cost and environmentally friendly supercapacitor has been prepared from Palm Kernel Shell Biochar (PKSB). In this study, physical and electrochemical properties of raw, activated and chemical treated (potassium hydroxide (KOH)) as supercapacitors such as high carbon content, high charge storage capacity and stable were evaluated. For physical analyses, the scanning electron microscopy (SEM) was used to study the surface morphology and surface area and porosity were measured using Brunaurer-Emmert-Teller (BET). The chemical treated PKSB shows the highest surface area values of 55.15 m2/g as compared to raw and activated samples with surface area are 0.17 m2/g and 19.32 m2/g, respectively. This is verified by in enhancement of capacitance achieved from 1.76 × 10−3 Fg-1 for the activated biochar and 1.87 × 10−6 Fg-1 for untreated PKSB showed by Raman spectroscopy. This enhancement reflected the charge storage capacity is attributed to the creation of broad distribution in pore size and a larger surface area. In addition, this phenomenon also supported by the electrochemical profiles through cyclic voltammogram (CV) measured by Potentiostat-Gavanostat (EIS). CV of the treated PKSB gave better square shape than the activated and raw biochar samples. These characterizations conclude that the raw palm kernel biochar need further treatment to become supercapacitor electrodes to replace activated carbon.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.