Open Access
Issue
MATEC Web Conf.
Volume 215, 2018
The 2nd International Conference on Technology, Innovation, Society and Science-to-Business (ICTIS 2018)
Article Number 01026
Number of page(s) 5
Section Emerging Technologies and Applied Science
DOI https://doi.org/10.1051/matecconf/201821501026
Published online 16 October 2018
  1. E.P. Murray, T. Tsai, and S.A. Barnett, A Direct-Methane Fuel Cell with a Ceria-Based Anode. Nature, 400, 649–651. (1999) [CrossRef] [Google Scholar]
  2. S.H. Cui, J.H. Li X.W. Zhou, G.Y. Wang, J.L. Luo, K.T. Chuang, Y. Bai, and L.J. Qiao, Cobalt Doped LaSrTiO3-δ as an Anode Catalyst: Effect of Co Nanoparticle Precipitation on SOFCs Operating on H2S-Containing Hydrogen. J. Mater. Chem., 1, 9689–9696. (2013) [CrossRef] [Google Scholar]
  3. B.C.H. Steele and A. Heinzel, Materials for Fuel Cell Technologies. Nature, 414, 345–352. (2011) [CrossRef] [PubMed] [Google Scholar]
  4. E.D. Wachsman, and K.T. Lee, Lowering the Temperature of Solid Oxide Fuel Cells Science. 334, 935–939. (2011) [Google Scholar]
  5. D.J.L. Brett, A. Atkinson, N.P. Brandon, and S.J. Skinner, Intermediate Temperature Solid Oxide Fuel Cell. Chem. Soc. Rev., 37, 1568–1578. (2008) [CrossRef] [PubMed] [Google Scholar]
  6. X. Zhang, L. Liu, Z. Zhao, B. Tu, D. Ou, D. Cui, X. Wei, X. Chen, and M. Cheng, Enhanced Oxygen Reduction Activity and Solid Oxide Fuel Cell Performance with a Nanoparticles-Loaded Cathode. Nano Lett., 15,1703–1709. (2015) [CrossRef] [Google Scholar]
  7. T.H. Lee, K.Y. Park, N.I., Kim, S.J. Song, D. Ahn, K.A. Abul, J. Hwang, K.H. Hong, S. Bhattacharjee, S.C. Lee, H.T. Lim, and J.Y. Park. Robust NdBa0.5Sr0.5Co1.5Fe0.5O5 Cathode Material and its Degradation Prevention Operating Logic for Intermediate Temperature Solid Oxide Fuel Cells. J. Power Sources, 331, 495–506. (2016) [CrossRef] [Google Scholar]
  8. K. Park, S. Yu, J. Bae, H. Kim, and Y. Ko, Fast Performance Degradation of SOFC Caused by Cathode Delamination in Long-Term Testing.’ Int. J. Hydrogen Energy, 35, 8670–8677. (2010) [CrossRef] [Google Scholar]
  9. D.J. Chen, Ran, R., K. Zhang, J. Wang, and Z.P. Shao, Intermediate Temperature Electrochemical Performance of a Polycrystalline PrBaCoO5+δ Cathode on Samarium-Doped Ceria Electrolyte.’ J. Power Sources, 188, 96–105. (2009) [CrossRef] [Google Scholar]
  10. Q. Zhou, F. Wang, Y. Shen, and T. He, Performance of LnBaCo2O5+δ-Ce0.8Sm0.2)1.9 Composite Cathodes for Intermediate-Temperaure Solid Oxide Fuel Cells. J. Power Sources, (195), 2174–2181. (2010) [CrossRef] [Google Scholar]
  11. J.H. Kim, M. Cassidy, J.T.S. Irvine, and J. Bae, Electrochemical Investigation of Composite Cathodes with SmBa0.5Sr0.5Co2O5+δ Cathodes for Intermediate Temperature Solid Oxide Fuel Cell. Chem Mater., 22, 883–892. (2010) [CrossRef] [Google Scholar]
  12. G.R. Zhang, X.L. Dong, Z.K. Liu, W. Zhou, Z.P. Shao, and W.Q. Jin, Cobalt-Site Cerium Doped SmxSr1-xCoO3-δ Oxides as Potential Cathode Materials for Solid Oxide Fuel Cells. J. Power Sources, 195, 3386–3393. (2010) [CrossRef] [Google Scholar]
  13. B. Wei, Z. Lu, and T. Wei, Nanosized Ce0.8Sm0.2O1.9 Infiltrated GdBaCo2O5-δ Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells. Int. J. Hydrogen Energy, 36, 6151–6159. (2011) [CrossRef] [Google Scholar]
  14. A. Subardi, M.H. Cheng, and Y.P. Fu, Chemical Bulk Diffusion and Electrochemical Properties of SmBa0.6Sr0.4Co2O5+δ Cathode for Intermediate Solid Oxide Fuel Cells. Int. J. Hydrogen Energy, 39, 20783–20790. (2014) [CrossRef] [Google Scholar]
  15. D. Chen, and Z. Shao, Surface Exchange and Bulk Diffusion Properties of Ba0.5Sr0.5Co0.8Fe0.2O3-δ Mixed Conductor. Int. J. Hydrogen Energy, 36, 6948–6956. (2011) [CrossRef] [Google Scholar]
  16. S.B. Adler, B.T. Henderson, M.A. Wilson, D.M. Taylor, and R.E. Richards, Reference Electrode Placement and Seals in Electrochemical Oxygen Generators. Solid State Ionics, 134, 35–42. (2000) [CrossRef] [Google Scholar]
  17. J. Winkler, P.V. Hendriksen, N. Bonanos, and M. Mongensen, Geometric Requirements of Solid Electrolyte Cells with a Reference Electrode. J. Electrochem. Soc., 145, 1184–1192. (1998) [CrossRef] [Google Scholar]
  18. H. Ding, X. Xue, and X. Liu, High Performance Layered SmBa0.5Sr0.5Co2O5+δ Cathode for Intermediate-Temperature Solid Oxide Fuel Cells. J. Power Sources, 194, 815–817. (2009) [CrossRef] [Google Scholar]
  19. A. Jun, J. Kim, and J. Shin, ‘Optimization of Sr Content in Layered SmBa1-xSrxCo2O5+δ Perovskite Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells. Int. J. Hydrogen Energy, 37, 18381–18388. (2012) [CrossRef] [Google Scholar]
  20. T. Chen, S. Pang, X. Shen, X. Jiang, and W. Wang, Evaluation of Ba-Deficient PrBa01-xFe2O5+δ Oxide as Cathode Materials for Intermediate-Temperature Solid Oxide Fuel Cells. RSC Adv., 6, 13829–13836. (2016) [CrossRef] [Google Scholar]
  21. K. Huang, H.Y. Lee, J.B. Goodenough, Srand Ni-Doped LaCoO3 and LaFeO3 Perovskites: New Cathode Materials for Solid Oxide Fuel Cells. J. Electrochem. Soc., 145, 3220–3227. (1998) [CrossRef] [Google Scholar]
  22. M.A.S. Rodriguez, and J.B. Goodenough, LaCoO3 Revisited. J. Solid State Chem., (116), 224–231. (1995) [CrossRef] [Google Scholar]
  23. A. Subardi, C.C. Chen, and Y.P. Fu, Electrical, Thermal and Electrochemical Properties of SmBa1-xSrxCo2O5+δ Cathode Materials for Intermediate-Temperature Solid Oxide Fuel Cells. Electrochi. Acta, 204, 118–127. (2016) [CrossRef] [Google Scholar]
  24. A. Subardi K.Y. Liao, and Y.P. Fu, Oxygen Transport, Thermal and Electrochemical Properties of NdBa0.5Sr0.5Co2O5+δ Cathode for SOFCs. J European Ceramic Society, (2018) [Google Scholar]
  25. K. Chen, and S.P. Jiang, Review-Materials Degradation of Solid Electrolysis Cells, J. Electrochem. Soc., 163, 3070–3083. (2016) [CrossRef] [Google Scholar]
  26. W.C. Jung, and H.L. Tuller, Investigation of Surface Sr Segregation in Model Thin Film Solid Oxide Fuel Cell Perovskite Electrodes. Energy Environ. Sci., 5, 5370–5378. (2012) [CrossRef] [Google Scholar]
  27. J.H. Nam, and D.H. Jeon, A Comprehensive Microscale Model for Transport and Reaction in Intermediate Temperature Solid Oxide Fuel Cell. Electrochi. Acta, 51, 3446–3460. (2006) [CrossRef] [Google Scholar]
  28. M. Anderson, J. Yuan, and B. Sunden, Review on Modeling Development for Multiscale Chemical Reaction Coupled Transport Phenomena in Solid Oxide Fuel Cell. Appl. Energy, 87, 1461–1476. (2010) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.